SPLIT TYPE ROOM AIR CONDITIONER WALL MOUNTED type INVERTER

SERVICE INSTRUCTION

Models

Indoor unit

AS*A07LGC AS*A09LGC AS*A12LGC AS*A14LGC AO*R07LGC AO*R09LGC AO*R12LGC AO*R14LGC

Outdoor unit

FUJITSU GENERAL LIMITED

CONTENTS

1. SPECIFICATION	
AS*A09/12LGC, AO*R09/12LGC	01-01
2. DIMENSIONS	
AS*A09/12LGC, AO*R09/12LGC	02-01
3. REFRIGERANT SYSTEM DIAGRAM	
AS*A09/12LGC, AO*R09/12LGC	03-01

4. CIRCUIT DIAGRAM

AS*A09/12LGC, AO*R09/12LGC	04-01

5. DESCRIPTION OF EACH CONTROL OPERATION

1. COOLING OPERATION	05-01
2. HEATING OPERATION	05-02
3. DRY OPERATION	05-03
4. AUTO CHANGEOVER OPERATION	05-04
5. INDOOR FAN CONTROL	05-05
6. OUTDOOR FAN CONTROL	05-07
7. LOUVER CONTROL	05-08
8. COMPRESSOR CONTROL	05-09
9. TIMER OPERATION CONTROL	05-10
10. ELECTRONIC EXPANSION VALVE CONTROL	05-12
11. TEST OPERATION CONTROL	05-12
12. PREVENT TO RESTART FOR 3 MINUTES (3 MINUTES ST)	05-12
13. FOUR-WAY VALVE EXTENSION SELECT	05-12
14. AUTO RESTART	05-12
15. MANUAL AUTO OPERATION (Indoor unit body operation)	05-13
16. FORCED COOLING OPERATION	05-13
17. COMPRESSOR PREHEATING	05-13
18. COIL DRY OPEARTION CONTROL	05-13
19. DEFROST OPERATION CONTROL	05-14
20. OFF DEFROST OPERATION CONTROL	05-16
21. 10°C HEAT OPERATION	05-16
22. VARIOUS PROTECTIONS	05-17

6. REFRIGERANT CAUTION -R410A-

1. R410A TOOLS	. 06-01
2. PRECAUTION FOR INSTALLATION	06-02
3. PRECAUTION FOR SERVICING	. 06-04
4. NEW REFRIGERANT R410A	. 06-05
5. DEFFERENCE FROM CONVENTIONAL MODEL(R22) AND PRECAUTIONS	06-08

7. TROUBLE SHOOTING

1. WHEN THE UNIT DOES NOT OPERATE AT ALL	07-01
2. SELF DIAGNOSIS FUNCTION	
3. TROUBLE SHOOTING METHOD	
4. SELF-DIAGNOSIS FUNCTION AND CHECKING POINTS	07-03
5. SERIAL SIGNAL DIAGNOSIS	07-07
6. IPM PROTECTION	07-08
7. TROUBLE SHOOTING OF REFRIGERANT CYCLE	

8. APPENDING DATA

1. Function setting	08-01
2. Jumper setting of Outdoor unit	08-03
3. Outdoor unit Pressure Value and Total Electric Current Curve	08-04
4. Thermistor Resistance Values	80-80
5. Capacity/ Input Data	08-09

9. REPLACEMENT PARTS

10. INSTALLATION MANUAL

WALL MOUNTED type INVERTER

1. SPECIFICATIONS

SPECIFICATIONS

ELECTRICAL DATA

TYPE		Cool & heat inverter			
INDOOR UNIT		AS*A07LGC	AS*A07LGC AS*A09LGC AS*A12LGC AS*A14LGC		
OUTDOOR UNIT		AO*R07LGC	AO*R09LGC	AO*R12LGC	AO*R14LGC
COOLING CAPACIT	Υ	2.10 kW	2.50 kW	3.40 kW	4.00 kW
HEATING CAPACIT	Y	3.00 kW	3.20 kW	4.00 kW	5.00 kW
POWER SOURCE		230 V	230 V	230 V	230 V
FREQUENCY		50 Hz	50 Hz	50 Hz	50 Hz
RUNNING	Cooling	2.4 A	3.2 A	4.3 A	4.9 A
CURRENT	Heating	3.2 A	3.7 A	4.6 A	5.7 A
INPUT WATTS	Cooling	0.470 kW	0.630 kW	0.895 kW	1.080 kW
INPUT WATTS	Heating	0.660 kW	0.750 kW	0.970 kW	1.295 kW
E.E.R.	Cooling	4.47 kW/kW	3.97 kW/kW	3.80 kW/kW	3.70 kW/kW
COP	Heating	4.55 kW/kW	4.27 kW/kW	4.12 kW/kW	3.86 kW/kW
MOISTURE REMOV	/AL	1.0 L/h	1.3 L/h	1.8 L/h	2.1 L/h
AIR CIRCULATION	Cooling	750 m ³ /h	750 m ³ /h	750 m ³ /h	800 m ³ /h
HIGH	Heating	750 m ³ /h	750 m ³ /h	750 m ³ /h	800 m ³ /h
MAXIMUM CURRENT	Cooling	6.0 A	6.0 A	6.5 A	9.0 A
	Heating	7.5 A	7.5 A	9.0 A	10.5 A

FAN MOTOR

POWER SOUR	CE	230 V		230 V		
	High speed			Cool 1,500 r.p.m. Heat 1,500 r.p.m.		
INDOOR UNIT	Middle speed	Cool 1,200 r.p.m. Heat 1,200 r.p.m.	<i>,</i> 1			
	Low speed			Cool 1,020 r.p.m. Heat 1,080 r.p.m.		
	Quiet			Cool 760 r.p.m. Heat 840 r.p.m.		
OUTDOOR UNI	т	C 730-150 r.p.m. H 650/ 470 r.p.m.	C 860- 200 r.p.m. H 760/ 680/ 470 r.p.m.	C 1050- 300 r.p.m. H 870- 480 r.p.m.		

NOISE LEVEL

	High speed	Cool 43 dB / Heat 43 dB		C 44 dB/ H 44 dB
INDOOR UNIT	Middle speed	Cool 38 dB / Heat 38 dB (C 40 dB/ H 40 dB
	Low speed	Cool 33 dB / Heat 33 dB		C 33 dB/ H 34 dB
	Quiet	Cool 21 dB / Heat 21 dB		C 25 dB/ H 27 dB
OUTDOOR UNI	Т	C 45 dB / H 45 dB C 48 dB / H 48 dB		C 48 dB / H 49 dB

DIMENSIONS

TYPE		Cool & heat inverter			
INDOOR UNIT		AS*A07LGC	AS*A07LGC AS*A09LGC AS*A12LGC AS*A14LGC		
OUTDOOR UNIT		AO*R07LGC	AO*R09LGC	AO*R12LGC	AO*R14LGC
INDOOR UNIT	HxWxD	260 x 790 x 198 mm			
OUTDOOR UNIT	H x W x D	540 x 660 x 290 mm 620 x 790 x 298mm			

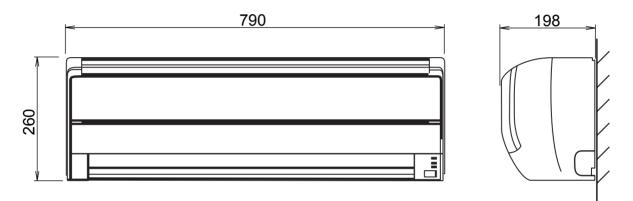
WEIGHT

INDOOR UNIT Gross	s / Net	t 10 kg / 7.5 kg		
OUTDOOR UNIT Gross	s / Net 28 kg / 25 kg	28 kg / 25 kg 35 kg / 32 kg 44 kg / 40 kg		

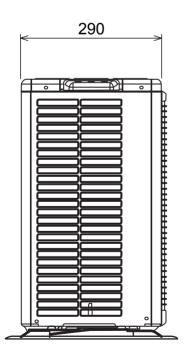
COMPRESSOR AND REFRIGERANT

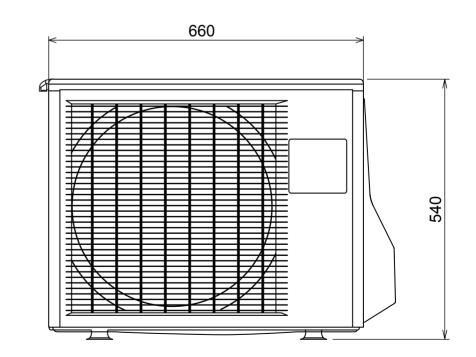
COMPRESSOR TYPE		Hermetic type, 4 pole, 3 phase, DC inverter motor, Rotary		
DISCRIMINATION		5SS072XAA	DA89X1C-20FZ	808 903 80(B)
WEIGHT (with oil)		5.9 kg	9.9 kg	9.0 kg
STANDARD REFRIGERANT		650 g 800 g 1000 g		1000 g
REFRIGERANT TYPE		R410A	R410A	R410A
Pipe Length	15 m	650 g	800 g	1000 g
FULL CHARGE	20 m	750 g	900 g	1100 g
ADDITIONAL REFRIGE	RANT	20 g/m		
MAXIMUM PIPING HEIGHT		15m		

WALL MOUNTED type INVERTER


2. DIMENSIONS

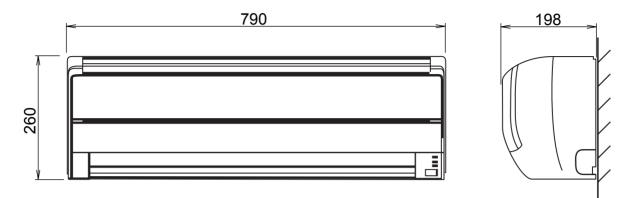
DIMENSIONS

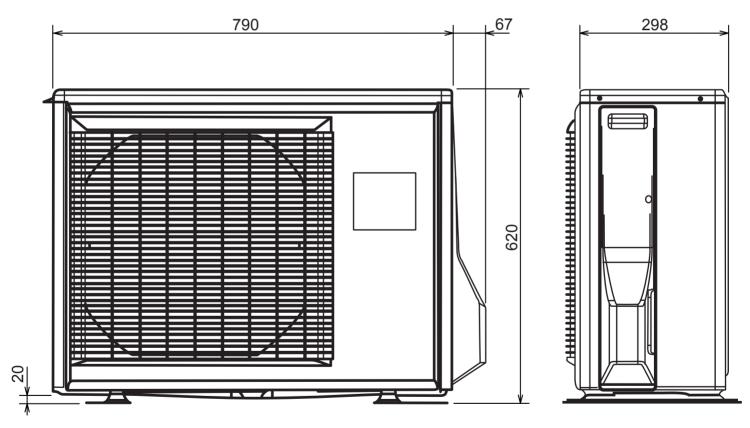

Models : AS*A07LGC / AO*R07LGC AS*A09LGC / AO*R09LGC AS*A12LGC / AO*R12LGC


(unit : mm)

INDOOR UNIT

OUTDOOR UNIT

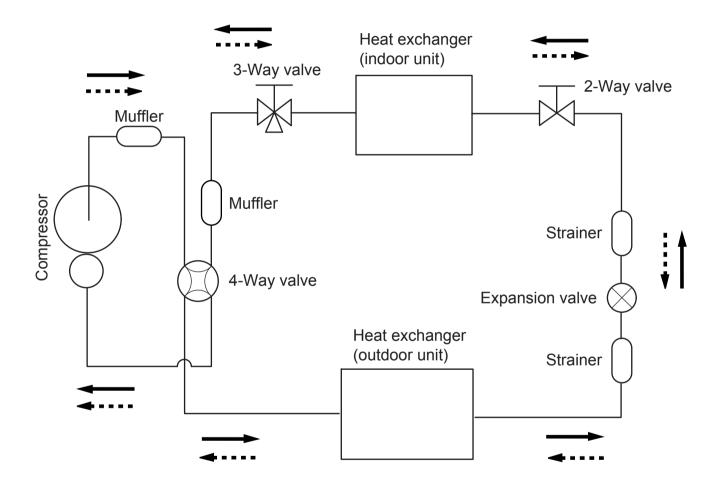



Models : AS*A14LGC / AO*R14LGC

(unit : mm)

INDOOR UNIT

OUTDOOR UNIT



WALL MOUNTED type INVERTER

3. REFRIGERANT SYSTEM DIAGRAM

REFRIGERANT SYSTEM DIAGRAM

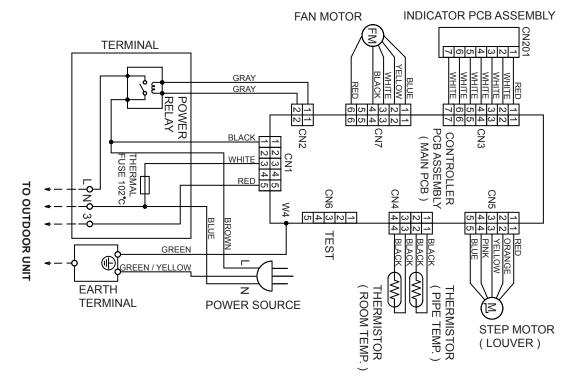
Models : AS*A07LGC / AO*R07LGC AS*A09LGC / AO*R09LGC AS*A12LGC / AO*R12LGC AS*A14LGC / AO*R14LGC

Refrigerant direction
Cooling

■■■■ Heating

For AS*A07/ 09/ 12LGC Refrigerant pipe diameter Liquid : 1/4" (6.35 mm) Gas : 3/8" (9.52 mm)

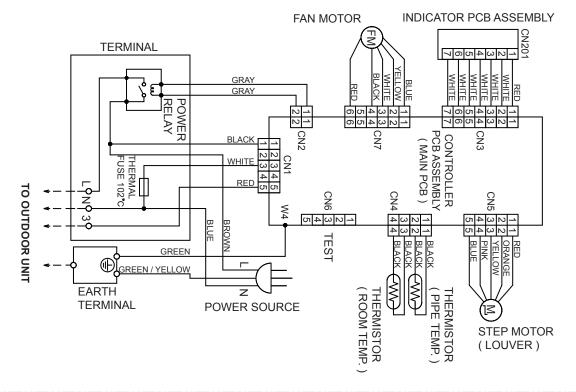
For AS*A14LGC Refrigerant pipe diameter Liquid : 1/4" (6.35 mm) Gas : 1/2" (12.7 mm)

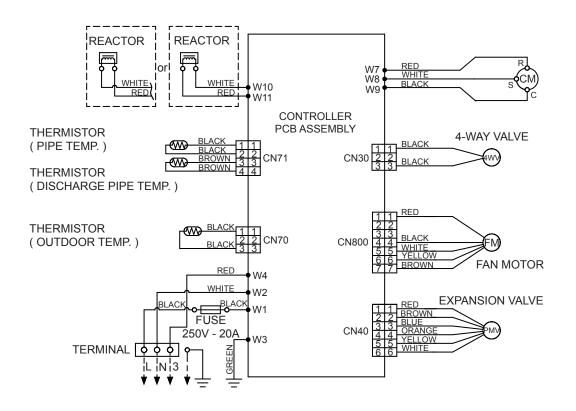

WALL MOUNTED type INVERTER

4. CIRCUIT DIAGRAM

CIRCUIT DIAGRAM

Models : AS*A07LGC / AO*R07LGC AS*A09LGC / AO*R09LGC AS*A12LGC / AO*R12LGC


INDOOR UNIT


AO*R07LGC **OUTDOOR UNIT** AO*R09LGC COMPRESSOR REACTOR REACTOR RED WHITE R(R)U lor W7 W8 SCM WHITE WHITE S(S) W10 W9 RED RED C(T)W **W**11 CONTROLLER AO*R12LGC PCB ASSEMBLY THERMISTOR COMPRESSOR RED (PIPE TEMP.) 11 **CN61** THERMISTOR ആ CN800 4 FM (DISCHARGE PIPE TEMP.) WHIT FAN MOTOR BROWN THERMISTOR EXPANSION VALVE BLACK ~ () CN62 (OUTDOOR TEMP.) BROWN BLUE CN40 PMV RED W4 WHITE w2 BLAC 4-WAY VALVE W1 FUSE BLAC CN501 2 2 BLA 250V - 20A W3 GREEN TERMINAL 000 Ŷ L N 3 ŧ ¥ -

Models : AS*A14LGC / AO*R14LGC

INDOOR UNIT

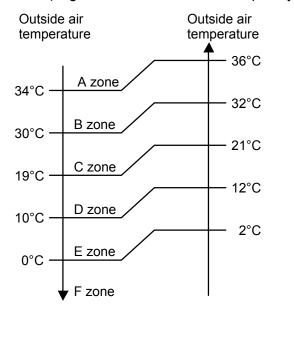
OUTDOOR UNIT

WALL MOUNTED type INVERTER

5. DESCRIPTION OF EACH CONTROL OPERATION

1. COOLING OPERATION

1-1 COOLING CAPACITY CONTROL


A sensor (room temperature thermistor) built in the indoor unit body will usually perceive difference or variation between a set temperature and present room temperature, and controls the operation frequency of the compressor.

- * If the room temperature is 2°C higher than a set temperature, the compressor operation frequency will attain to maximum performance.
- * If the room temperature is 2.5°C lower than a set temperature, the compressor will be stopped.
- * When the room temperature is between +2°C to -2.5°C of the setting temperature, the compressor frequency is controlled within the range shown in Table1. However, the maximum frequency is limited in the range shown in Figure 1 based on the fan speed mode and the outdoor temperature.

	•	• • •	
	minimum frequency	maximum frequency II	maximum frequency I
AS*A07/ 09LGC	22Hz	76Hz	79Hz
AS*A12LGC	18Hz	80Hz	96Hz
AS*A14LGC	18Hz	70Hz	80Hz

(Table 1 : Compressor Frequency Range)

(Fig. 1 : Limit of Maximum Frequency based on Outdoor Temperature)

		Hi	Me	Lo	Quiet
07LGC	A zone	79Hz	61Hz	52Hz	37Hz
09LGC	B zone	79Hz	61Hz	52Hz	37Hz
	C zone	79Hz	61Hz	52Hz	38Hz
	D zone	52Hz	43Hz	37Hz	28Hz
	E zone	64Hz	55Hz	49Hz	36Hz
	F zone	64Hz	55Hz	49Hz	36Hz
12LGC	A zone	96Hz	61Hz	51Hz	33Hz
	B zone	96Hz	61Hz	51Hz	33Hz
	C zone	96Hz	61Hz	51Hz	33Hz
	D zone	57Hz	42Hz	36Hz	27Hz
	E zone	57Hz	42Hz	36Hz	27Hz
	F zone	57Hz	42Hz	36Hz	27Hz
14LGC	A zone	80Hz	49Hz	38Hz	27Hz
	B zone	80Hz	49Hz	38Hz	27Hz
	C zone	80Hz	49Hz	38Hz	27Hz
	D zone	54Hz	38Hz	30Hz	22Hz
	E zone	54Hz	38Hz	30Hz	22Hz
	F zone	54Hz	38Hz	30Hz	22Hz

When the compressor operates for 30 minutes continuously at over the maximum frequency II, the maximum frequency is changed from Maximum Frequency I to Maximum Frequency II.

2. HEATING OPERATION

2-1 HEATING CAPACITY CONTROL

A sensor (room temperature thermistor) built in the indoor unit body will usually perceive difference or variation between a set temperature and present room temperature, and controls the operation frequency of the compressor.

- * If the room temperature is lower by 3°C than a set temperature, the compressor operation frequency will attain to maximum performance.
- * If the room temperature is higher 2.5°C than a set temperatire, the compressor will be stopped.
- * When the room temperature is between +2.5°C to -3°C of the setting temperature, the compressor frequency is controlled within the range shown in Table2.
 However, the maximum frequency is limited in the range shown in Figure 2 based on the fan speed mode and the outdoor temperature.

· · · · · · · · · · · · · · · · · · ·					
	minimum frequency	maximum frequency			
AS*A07/ 09LGC	22Hz	99Hz			
AS*A12LGC	18Hz	130Hz			
AS*A14LGC	18Hz	101Hz			

(Table 2 : Compressor Frequency Range)

(Fig.2: Limit of Maximum Frequency based on Outdoor Temperature)

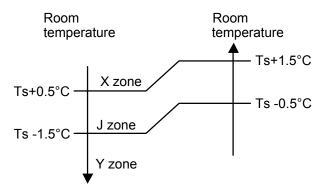
Outside air temperature	Outside air temperature							
temperature				Hi	Me+	Me	Lo	Quiet
	/19°C	07LGC	AA zone	99Hz	99Hz	96Hz	79Hz	67Hz
	ne	09LGC	A zone	99Hz	99Hz	96Hz	79Hz	67Hz
17°C			B zone	99Hz	99Hz	96Hz	79Hz	56Hz
B zo			C zone	99Hz	99Hz	96Hz	79Hz	46Hz
12°C		12LGC	AA zone	130Hz	130Hz	96Hz	80Hz	68Hz
	7°C		A zone	130Hz	130Hz	96Hz	80Hz	68Hz
5°C A zo	ne		B zone	130Hz	130Hz	96Hz	80Hz	54Hz
	Ι		C zone	130Hz	130Hz	96Hz	80Hz	45Hz
	one	14LGC	AA zone	101Hz	101Hz	75Hz	58Hz	45Hz
•			A zone	101Hz	101Hz	75Hz	58Hz	45Hz
			B zone	101Hz	101Hz	75Hz	58Hz	38Hz
			C zone	101Hz	101Hz	75Hz	58Hz	30Hz

* The room temperature is controlled 2°C higher than the setting temperature for 60 minutes after starting the operation.

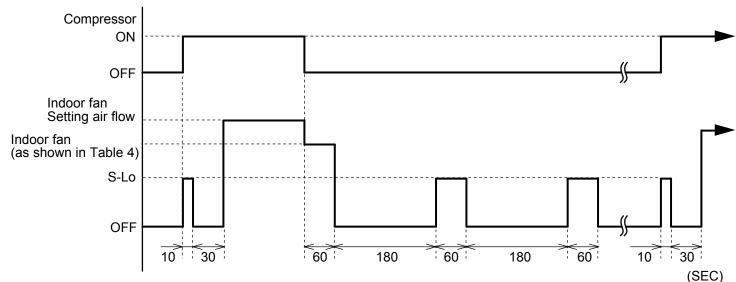
After 60 minutes, it is controlled based on the normal setting temperature.

3. DRY OPERATION

3-1 INDOOR UNIT CONTROL


The compressor rotation frequency shall change according to the temperature, set temperature, and room temperature variation which the room temperature sensor of the indoor unit body has detected as shown in the Table 3.

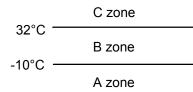
However, after the compressor is driven, the indoor unit shall run at operation frequency of 70Hz (for AS*A07/09LGC) or 56Hz (for AS*A12LGC) or 40Hz (for AS*A14LGC), for a minute.


		Operating frequency			Operating frequency			Operating frequency
07LGC	X zone	37Hz	12LGC	X zone	33Hz	14LGC	X zone	27Hz
09LGC	J zone	28Hz		J zone	25Hz		J zone	20Hz
	Y zone	0Hz		Y zone	0Hz		Y zone	0Hz

(Table 3 : Compressor frequency)

(Fig.3 : Compressor Control based on Room Temperature)

(Table 4 : Indoor fan speed)


	X zone	J, Y zone
AS*A07/ 09LGC	620rpm	590rpm
AS*A12LGC	620rpm	590rpm
AS*A14LGC	760rpm	730rpm

4. AUTO CHANGEOVER OPERATION

When the air conditioner is set to the AUTO mode by remote control, operation starts in the optimum mode from among the HEATING, COOLING, DRY and MONITORING modes. During operation, the optimum mode is automatically switched in accordance with temperature changes. The temperature can be set between 18°C and 30°C in 1°C steps.

① When operation starts, only the indoor and outdoor fans are operated for 1 minute. After 1 minute, the room temperature and outside air temperature are sensed and the operation mode is selected in accordance with the table below.

(Fig.5: Outside air temperature zone selection)

(Table.5 Operation mode selection table)

Outside air temperature (TO) Room temperature (TB)	A zone	B zone	C zone
TB > TS+2°C	Monitoring	Cooling (automatic dry)	Cooling (automatic dry)
$TS+2^{\circ}C \ge TB \ge TS - 2^{\circ}C$	Monitoring	Monitoring	Monitoring
TB <ts-2°c< td=""><td>Heating</td><td>Heating</td><td>Monitoring</td></ts-2°c<>	Heating	Heating	Monitoring

O When COOING was selected at O , the air conditioner operates as follow:

- The same operation as COOLING OPERATION of item 1 above is performed.
- When the room temperature has remained at (set temperature -1°C) for 8 minutes, operation is automatically switched to DRY and the same operation as DRY OPERATION of item 3 above is performed.
- If the room temperature reaches (set temperature +2°C during DRY operation, operation returns to COOLING operation.
- ③ When HEATING was selected at ① , the same operation as HEATING OPERATION of item 2 above is performed.
- ④ When the compressor was stopped for 6 consecutive minutes by the temperature control function after the COOLING or HEATING operation mode was selected at ① above, operation is switched to MONITORING and the operation mode is selected again.

5. INDOOR FAN CONTROL

1. Fan speed

(Table 6 : Indoor Fan Speed)

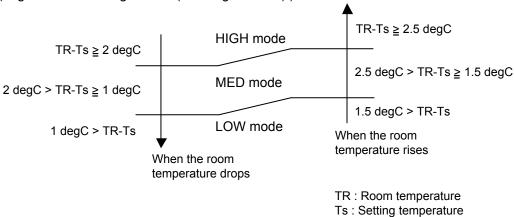
- AS*A07/ 09/ 12LGC

Operation mode	Air flow mode	Speed (rpm)
Heating	Hi	1440
_	Me+	1370
	Me	1200
	Lo	980
	Quiet	700
	Cool air prevention	600
	S-Lo	480
Cooling	Hi	1440
	Me	1200
	Lo	920
	Quiet	680
Dry		X zone: 680
		J zone: 650

- AS*A14LGC		
Operation mode	Air flow mode	Speed (rpm)
Heating	Hi	1500
	Me+	1440
	Me	1300
	Lo	1080
	Quiet	840
	Cool air prevention	600
	S-Lo	480
Cooling	Hi	1500
	Me	1300
	Lo	1020
	Quiet	760
Dry		X zone: 760 J zone: 730

2. FAN OPERATION

The airflow can be switched in 5 steps such as AUTO, QUIET, LOW, MED, HIGH, while the indeer for only rung


while the indoor fan only runs.

When Fan mode is set at (Auto), it operates on (MED) Fan Speed.

3. COOLING OPERATION

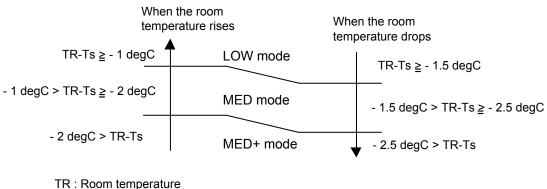
Switch the airflow [AUTO], and the indoor fan motor will run according to a room temperature, as shown in Figure 6.

On the other hand, if switched in [HIGH] \sim [QUIET], the indoor motor will run at a constant airflow of [COOL] operation modes QUIET, LOW, MED, HIGH, as shown in Table 6.

(Fig.6: Airflow change - over (Cooling: AUTO))

4. DRY OPERATION

Refer to the Table 6.

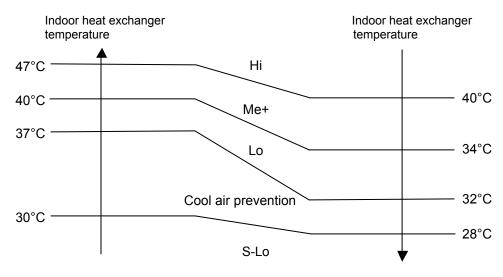

During the dry mode operation, the fan speed setting can not be changed.

5. HEATING OPERATION

Switch the airflow [AUTO], and the indoor fan motor will run according to a room temperature, as shown in Figure 7.

On the other hand, if switched in [HIGH] \sim [QUIET], the indoor motor will run at a constant airflow of [HEAT] operation modes QUIET, LOW, MED, HIGH, as shown in Table 6.

(Fig.7: Airflow change - over (Heating: AUTO))



Ts : Setting temperature

6. COOL AIR PREVENTION CONTROL (Heating mode)

The maximum value of the indoor fan speed is set as shown in Figure 8, based on the detected temperature by the indoor heat exchanger sensor on heating mode.

1. Outdoor Fan Motor

Following table shows the type of the outdoor fan motor. The control method is different between AC motor and DC motor.

(Table 7 : Type of Motor)

	AC Motor	DC Motor
AS*A07/ 09/ 12/ 14LGC		\bigcirc

2. Fan Speed

(Table 8 : Outdoor fan speed)

	or lan speed)		(rpm)
	ZONE 💥	Cooling	Dry	Heating
AS*A07LGC	A - C	730/ 650/ 470	730/ 470	
AS*A09LGC	D	730/ 470/ 230	100/410	650/ 470
	E	230	230	000/4/0
	F	150	150	
AS*A12LGC	A - C	860/ 760/ 470	760/ 470	
	D	860/ 470/ 330	700/470	760/ 680/ 470
	E	330	330	700/000/470
	F	230/ 200	230/ 200	
AS*A14LGC	A - C	870/ 720/ 530	F 20	
	D	870/ 720/ 530/ 300	530	780/ 720/ 590/ 480
	E	300	300	100/120/090/400
	F	250/ 200	250/ 200	

※ Refer to Fig1.

* It runs at 500(A-D ZONE)/200(E,F ZONE) rpm for 20 seconds after starting up the outdoor fan.

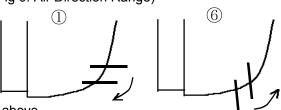
- The outdoor fan speed mentioned avobe depends on the compressor frequency.
 (When the compressor frequency increases, the outdoor fan speed also changes to the higher speed. When the compressor frequescy decreases, the outdoor fan speed also changes to the lower speed.)
- * Outdoor temperature falls, and if it becomes E and F zone(Refer to Fig1), rotations of fan speed will fall.
- * After the defrost control is operated on the heating mode, the fan speed keeps at the higher speed as table 9 without relating to the compressor frequency.

(Table 9 : Outdoor fan speed aft	ter the defrost)
----------------------------------	------------------

	Min
AS*A07/ 09/ 12LGC	900rpm
AS*A14LGC	1100rpm

7. LOUVER CONTROL

1. VERTICAL LOUVER CONTROL


(Function Range)

Each time the button is pressed, the air direction range will change as follow:

 $1) \xrightarrow{\rightarrow} 2 \xrightarrow{\rightarrow} 3 \xrightarrow{\rightarrow} 4 \xrightarrow{\rightarrow} 5 \xrightarrow{\rightarrow} 6$

(Fig 9: Air Direction Range)

(Operation Range) Cooling / Dry mode : ①-②-③ Heating mode : ④-⑤-⑥ Fan mode : ①-②-③-④-⑤-⑥

Use the air direction adjustments within the ranges shown above.

The vertical airflow direction is set automatically as shown, in accordance with the type of operation selected.
 Cooling / Dry mode : Horizontal flow ①

		-
Heating mode	: Downward flow	6

- When the temperature of the air being blown out is low at the start of heating operation or during defrosting, the airflow direction temporarily becomes ① to prevent cold air being blown onto the body.
- During use of the Cooling and Dry modes, do not set the Air Flow Direction Louver in the Heating range ($(4\sim6)$) for long period of time, since water vapor many condense near the outlet louvers and drop of water may drip from the air conditioner. During the Cooling and Dry modes, if the Air Flow Direction Louvers are left in the heating range for more than 30minutes, they will automatically return to position (3).
- During Monitor operation in AUTO CHANGEOVER mode, the airflow direction automatically becomes ①, and it cannot be adjusted.

2. SWING OPERATION

When the swing signal is received from the remote controller, the vertical louver starts to swing.

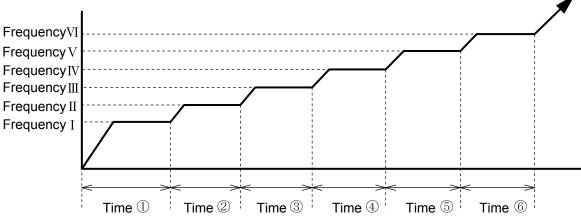
(Swinging Range)

Cooling mode / Dry mode / Fan mode($1 \sim 3$) : $1 \Leftrightarrow 3$ Heating mode / Fan mode($4 \sim 6$) : $3 \Leftrightarrow 6$

• When the indoor fan is either at S-Io or Stop mode, the swinging operation is interrrupted and the louver stops at the memorized position.

8. COMPRESSOR CONTROL

1. OPEARTION FREQUENCY RANGE


The operation frequency of the compressor is different based on the operation mode as shown in the table 10.

	Cooling		Hea	Heating		Dry	
	Min	Max	Min	Max	Min	Max	
AS*A07/ 09LGC	22Hz	79Hz	22Hz	99Hz	28Hz	37Hz	
AS*A12LGC	18Hz	96Hz	18Hz	130Hz	25Hz	33Hz	
AS*A14LGC	18Hz	80Hz	18Hz	101Hz	20Hz	27Hz	

(Table 10 : Compressor Operation Frequency Range)

2. OPEARTION FREQUENCY CONTROL AT START UP

The compressor frequency soon after the start-up is controlled as shown in the figure 10.

(Fig.10 : Compressor Control at Start-up)

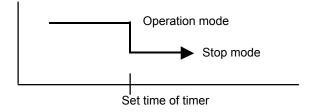
(Frequency)

	Frequency I	Frequency∏	Frequency III	FrequencyIV	${\sf Frequency}_V$	FrequencyVI
AS*A07/ 09LGC	70Hz	82Hz	92Hz	96Hz	96Hz	96Hz
AS*A12LGC	56Hz	74Hz	87Hz	97Hz	108Hz	119Hz
AS*A14LGC	40Hz	59Hz	72Hz	85Hz	101Hz	110Hz

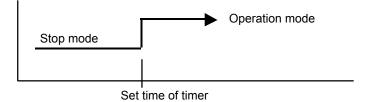
(Time)

	Time ①	Time 2	Time ③	Time ④	Time (5)	Time ⑥
AS*A07/ 09LGC	80sec	60sec	60sec	180sec	60sec	60sec
AS*A12LGC	80sec	60sec	60sec	180sec	60sec	60sec
AS*A14LGC	120sec	60sec	40sec	50sec	80sec	60sec

9. TIMER OPEARTION CONTROL

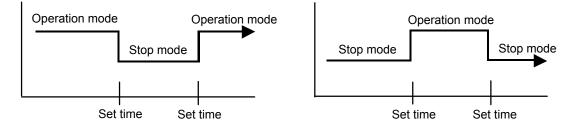

The table 11 shows the available timer setting based on the product model.

(Table 11 : Timer Setting)


	ON TIMER / OFF TIMER	PROGRAM TIMER	SLEEP TIMER
AS*A07/ 09/ 12/ 14LGC	0	0	0

1. OPEARTION FREQUENCY RANGE

• OFF timer : When the clock reaches the set time, the air conditioner will be turned off.



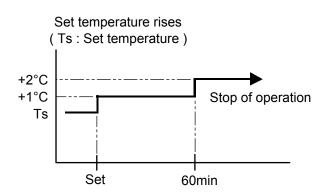
• ON timer : When the clock reaches the set time, the air conditioner will be turned on.

2. PROGRAM TIMER

• The program timer allows the OFF timer and ON timer to be used in combination one time.

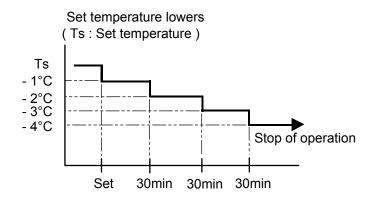
• Operation will start from the timer setting (either OFF timer or ON timer) whichever is closest to the clock's current timer setting.

The order of operations is indicated by the arrow in the remote control unit's display.


· SLEEP timer operation cannot be combined with ON timer operation.

3. SLEEP TIMER

If the sleep is set, the room temperature is monitored and the operation is stopped automatically. If the operation mode or the set temperature is change after the sleep timer is set, the operation is continued according to the changed setting of the sleep timer from that time ON.


In the cooling operation mode

When the sleep timer is set, the setting temperature is increased 1°C. It increases the setting temperature another 1°C after 1 hour. After that, the setting temperature is not changed and the operation is stopped at the time of timer setting.

In the heating operation mode

When the sleep timer is set, the setting temperature is decreased 1°C. It decreases the setting temperature another 1°C every 30 minutes. Upon lowering 4°C, the setting temperature is not changed and the operation stops at the time of timer setting.

10. ELECTRONIC EXPANSION VALVE CONTROL

The most proper opening of the electronic expansion valve is calculated and controlled under the present operating condition based on the following values.

The compressor frequency, the temperatures detected by the discharge temperature sensor, the indoor heat exchanger sensor, the outdoor heat exchanger sensor,

and the outdoor temperature sensor.

- * The pulse range of the electronic expansion valve control is between 60 to 480 pulses.
- * The expansion valve is set at 480 pulses after 110 seconds of stopping compressor.
- * At the time of supplying the power to the outdoor unit, the initialization of the electronic expansion valve is operated (528 pulses are input to the closing direction).

11. TEST OPERATION CONTROL

Under the condition where the air conditioner runs, press the test run button of the remote control, and the test operation control mode will appear. During test running, the operation lamp and timer lamp of the air conditioner body twinkle simultaneously. Set the test operation mode, and the compressor will continue to run regardless of whether the room temperature sensor detects. The test operation mode is released if 60 minutes have passed after setting up the test operation.

12. PREVENT TO RESTART FOR 3 MINUTES (3 MINUTES ST)

The compressor won't enter operation status for 2 minutes and 20 seconds after the compressor is stopped, even if any operation is given.

13. FOUR-WAY VALVE EXTENSION SELECT

At the time when the air conditioner is switched from the cooling mode to heating mode, the compressor is stopped, and the four-way valve is switched in 2 minutes and 20 seconds later after the compressor stopped.

14. AUTO RESTART

When the power was interrupted by a power failure, etc. during operation, the operation contents at that time are memorized and when power is recovered, operation is automatically started with the memorized operation contents.

When the power is interrupted and recovered during timer operation, since the timer operation time is shifted by the time the power was interrupted, an alarm is given by blinking (7 sec ON/2 sec OFF) the indoor unit body timer lamp.

[Operation contents memorized when the power is interrupted]

- Operation mode
- Set temperature
- Set air flow
- $\boldsymbol{\cdot}$ Timer mode and timer time
- · Set air flow Direction
- Swing
- · 10°C HEAT

15. MANUAL AUTO OPERATION (Indoor unit body operation)

If MANUAL AUTO Button is set, the operation is controlled as shown in Table 12.

If the remote control is lost or battery power dissipated, this function will work without the remote control. (Table 12)

<u>, </u>		
	Manual auto operation	Forced cooling operation
OPERATION MODE	Auto changeover	Cooling
FAN CONT. MODE	Auto	Hi
TIMER MODE	Continuous (No timer setting available)	-
SETTING TEMP.	24°C	Room Temp is not controlled
SETTING LOUVER	Standard	Horizontal
SWING	OFF	OFF

16. FORCED COOLING OPERATION

Forced cooling operation is started when pressing MANUAL AUTO button for 10 seconds or more. During the forced cooling operation, it operates regardless of room temperature sensor. Operation LED and timer LED blink during the forced cooling operation. They blink for 1 second ON and 1 second OFF on both operation LED and timer LED (same as test operation). Forced cooling operation is released after 60 minutes of starting operation. The FORCED COOLING OPERATION will start as shown in Table12.

17. COMPRESSOR PREHEATING

When the outdoor heat exchanger temperature is lower than 5°C and the heating operation has been stopped for 30 minutes, power is applied to the compressor and the compressor is heated. (By heating the compressor, warm air is quickly discharged when operation is started.) When operation was started, and when the outdoor temperature rises to 7°C or greater, preheating is ended.

18. COIL DRY OPERATION CONTROL

The coil-dry operation functions by pressing COIL DRY button on the remote controller. The coil-dry operation is consisted of Fan operation 50 minutes, Heating operation 3 minutes, and Fan operates for 30 minutes at last before ending the air conditioner operation.

<u> </u>							
	Indoor Fan Speed	Compressor Frequency	Louver Position	Main Unit Indication			
AS*A07/ 09LGC	780rpm	43Hz	1				
AS*A12LGC	780rpm	39Hz	1	COIL-DRY : ON Other indication : OFF			
AS*A14LGC	870rpm	27Hz	1				

(Table	13 ·	COII -	DRY	Operating	Functions)
1	Table	10.	COL		Operating	i uncuons)

19. DEFROST OPERATION CONTROL

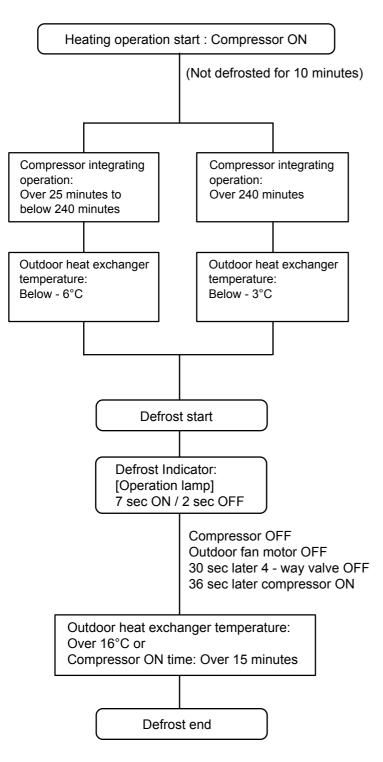
1. CONDITION OF STARTING THE DEFROST OPERATION

The defrost operation starts when the outdoor heat exchanger temperature sensor detects the temperature lower than the values shown in Table 14.

(Table 14 : Condition of starting Defrost Operation))
--	---

	Compressor operating time			
	Less than 25 minutes	25 minutes to 4 hours	After 4 hours	
AS*A07/ 09/ 12/ 14LGC	Does not operate	- 6°C	- 3°C	

2. CONDITION OF THE DEFROST OPERATION COMPLETION


Defrost operation is released when the conditions become as shown in Table 15.

(Table 15 : Defrost Release Condition)

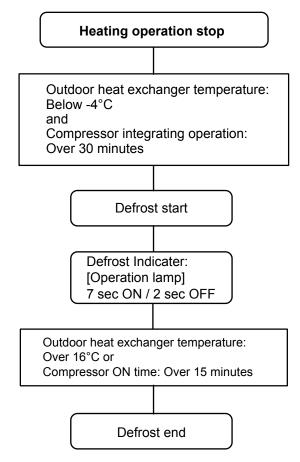
	Release Condition
AS*A07/ 09/ 12/ 14LGC	Outdoor heat exchanger temperature sensor value is higher than 16°C or Compressor operation time has passed 15 minutes.

Defrost Flow Chart

The defrosting shall proceed by the integrating operation time and outdoor heat exchanger temperature as follows.

20. OFF DEFROST OPEARTION CONTROL

When operation stops in the [Heating operation] mode, if frost is adhered to the outdoor unit heat exchanger, the defrost operation will proceed automatically. In this time, if indoor unit operation lamp flashes slowly (7 sec ON / 2 sec OFF), the outdoor unit will allow the heat exchanger to defrost, and then stop.


1. OFF DEFROST OPERATION CONDITION

In heating operation, the outdoor heat exchanger temperature is less than -4°C, and compressor operation integrating time lasts for more than 30 minutes.

2. OFF DEFROST END CONDITION

	Release Condition
AS*A09/ 12LGC	Outdoor heat exchanger temperature sensor value is higher than 16°C or Compressor operation time has passed 15 minutes.

OFF Defrost Flow Chart

21. 10°C HEAT OPERATION

The 10°C HEAT operation functions by pressing 10°C HEAT button on the remote controller. The 10°C HEAT operation is almost the same operation as below settings.

(Table 16)

mode	HEAT
setting temperature	10°C
fan mode	AUTO

22. VARIOUS PROTECTIONS

1. DISCHARGE GAS TEMPERATURE OVERRISE PREVENSION CONTROL

The discharge gas thermosensor (discharge thermistor : Outdoor side) will detect discharge gas temperature.

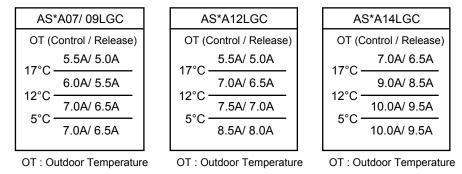
When the discharge temperature becomes higher than Temperature I, the compressor frequency is decreased 20 Hz, and it continues to decrease the frequency for 20 Hz every 120 seconds until the temperature becomes lower than Temperature I.

When the discharge temperature becomes lower than Temperature II, the control of the control of the compressor frequency is released.

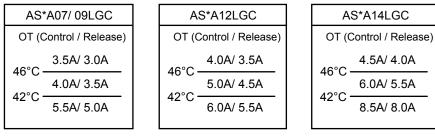
When the discharge temperature becomes higher than Temperature III, the compressor is stopped and the indoor unit LED starts blinking.

(Table 17 : Discharge Temperature Over Rise Prevension Control / Release Temperature)

	Temperature I	Temperature II	Temperature III
AS*A07/ 09/ 12/ 14LGC	104°C	101°C	110°C

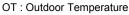

2. CURRENT RELEASE CONTROL

The compressor frequency is controlled so that the outdoor unit input current does not exceeds the current limit velue that was set up with the outdoor temperature.


The compressor frequency returns to the designated frequency of the indoor unit at the time when the frequency becomes lower than the release value.

(Table 18 : Current Release Operation Value / Release Value)

[Heating]



[Cooling]

OT : Outdoor Temperature

OT : Outdoor Temperature

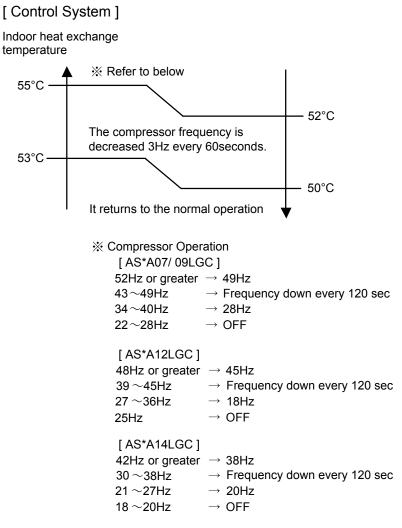
3. ANTIFREEZING CONTROL (Cooling and Dry mode)

The compressor frequency is decrease on cooling & dry mode when the indoor heat exchanger temperature sensor detects the temperature lower than Temperature I. Then, the anti-freezing control is released when it becomes higher than Temperature II.

Outdoor temperature	Temperature I	Temperature II						
Over than 10°C *1 or 12°C *2		7°C						
Less than 10°C *1 or 12°C *2	4°C	13°C						

(Table 19 : Anti-freezing Protection Operation / Release Temperature)

*1. When the temperature rises.


*2. When the temperature drops.

4. COOLING PRESSURE OVERRISE PROTECTION

When the outdoor unit heat exchange sensor temperature rises to 67°C or greater, the compressor is stopped and trouble display is performed.

5. HIGH TEMPERATURE RELEASE CONTROL (HEATING MODE)

On heating mode, the compressor frequency is controlled as following based on the detection value of the indoor heat exchanger temperature sensor.

WALL MOUNTED type INVERTER

6. REFRIGERANT CAUTION -R410A-

1. R410A TOOLS

This air conditioner used R410A.

For installation and servicing, it is necessary to prepare the tools and machines that are different from the previous refrigerant.

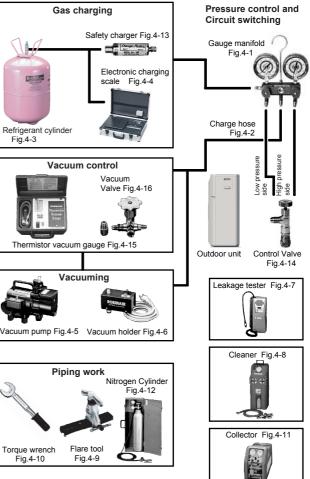
Mark shows the exclusive use for R410A.

- © Gauge manifold (Fig.4-1) The specification of the gauge is different due to higher pressure. The size of connection pipe is also different to prevent mis-use.
- Charge hose (Fig.4-2) Since the normal pressure is high, the connection pipe size is also different.
- Refrigerant cylinder (Fig.4-3) Confirm the refrigerant type before charging. Always charge liquid-phase refrigerant.

Electronic balance for refrigerant

- charging (Fig.4-4) Electronic balance is recommended as in the case of R410A.
- Vacuum pump with adapter to prevent
 reverse flow (Fig.4-5) Conventional pump can be used.

- Vacuum holder (Fig.4-6) Conventional pump can be used if adapter for preventing vacuum pump oil from flowing back is used.
- Exclusive for HFC
- Refrigerant cleaner (Fig.4-8) Brown paint as designated by the ARI, USA
- © Flare tool (Fig.4-9) The shape of flare is different for high pressure condition.
- Torque wrench (Fig.4-10)


Refrigerant recovering

equipment (Collector) (Fig.4-11) The type which can be used for any refrigerant is available

Nitrogen cylinder (Fig.4-12) This prevents an oxide film from forming in the pipe silveralloy brazing work by turning the air out of the pipe and preventing the inside combustion.

- ◎ Safety charger (Fig.4-13) It is always compulsory to change the liquid, because R410A is a mixed refrigerant and there is some fear that a mixing ratio changes. In order to avoid the refrigerant from returning to the compressor in a liquid state, the refrigerant can be charged instead of giving a load to the compressor with a safety charger.
 - Control valve (Fig.4-14) The control valve prevents the refrigerant from spouting when it is removed, as the charging hose side and the service port side are possible to open and close at the same time.
 - Thermistor vacuum gauge (Fig.4-15) To remove moisture from the refrigerating cycle completely, it is necessary to perform appropriate vacuum drying. For that reason, vacuum conditions can be confirmed certainly.
 - Vacuum valve (Fig.4-16) This valve builts in a check valve, and it is easily possible to vacuum a refrigerating cycle or check for degree of vacuum with it.

TOOLS AND EQUIPMENT (R410A)

*1

*1 Gauge Manifold									
	R410A	R22, R407C							
High pressure gauge	-0.1~5.3 Mpa	-0.1~3.5 Mpa							
Compond gauge	-0.1 ~ 3.8 Mpa	-0.1 ~ 1.7 Mpa							
Port size	1/2UNF 5/16"	7/16UNF 1/4"							

*2 Charge hose

	R410A	R22, R407C							
Normal pressure	5.1 Mpa	3.4 Mpa							
Breaking pressure	27.4 Mpa	17.2 Mpa							
Port size	1/2UNF	7/16UNF							

Precaution for installation

Pipe diameter, recommended material and wall thickness

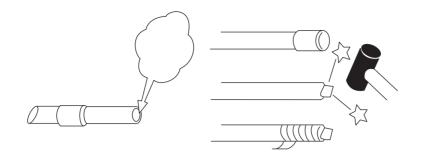
Nominal diameter (in)	1/4"	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/8"	1 1/4"	1 3/8"	1 1/2"
Outside diameter (mm)	6.35	9.52	12.70	15.88	19.05	22.22	25.40	28.58	31.75	34.92	38.10
Material	JIS H:	COPPER JIS H3300-C1220T-O or equivalent ¹⁾					IIS H330		PPER)T-H or e	quivalen	1t ²⁾
Wall thickness ³⁾ (mm)	0.8	0.8	0.8	1.0	1.2	1.0	1.0	1.0	1.1	1.2	1.3

1) Allowable tensile stress \geq 33 (N/mm²); 2) Allowable tensile stress \geq 61 (N/mm²); 3) Design pressure 4.2MPa.

The pipe must be properly pressure rated for R410A The pipe must be an air-conditioning refrigerant pipe.

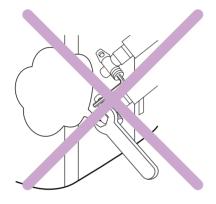
Flare and flare nuts

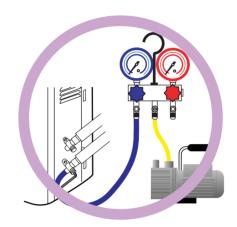
Diameter	1/4"(6.3	35mm)	3/8" (9.52mm)		1/2"(12.7mm)		3/8" (15.88mm)		3/4" (19.05mm)	
Refrigerant	R410A	R22 /R407C	R410A	R22 /R407C	R410A	R22 /R407C	R410A	R22 /R407C	R410A	R22 /R407C
А	9.1	9.0	13.2	13.0	16.6	16.2	19.7	19.4	24	23.7
В	13	12	20	15	13	20	25	23	29	29
С	12	11	16	12.5	19	16	22	20	24	24
Nut width	1	7	22		26	24	29	27	3	6



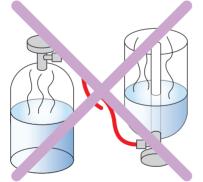
Always use the flare nut that is packed with the product.

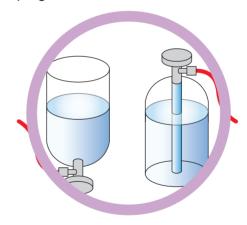
Do not use existing (for R22) pipes


- Be sure to use new pipes when replacing conventional (R22) model with HFC (R407C, R410A) model.
- If you use existing pipes, it may cause resolution of compressor oil by remaining mineral oil.


Be careful not to mix moisture and contamination into the pipe

Moisture and contamination in the pipe is a cause of trouble.

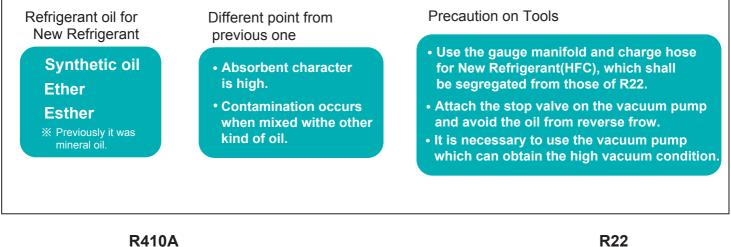

Air purge



Always use a vacuum pump to purge air.

Refrigerant charge

Don't charge from the gas phase side.

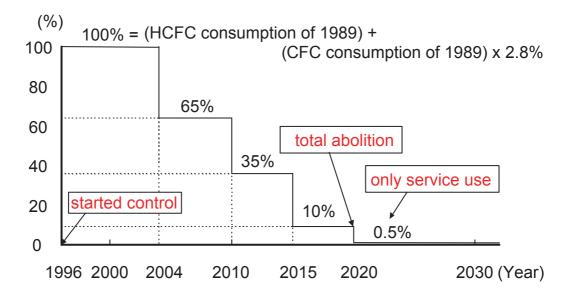

Do it always from the liquid phase side.

Compressor oil is changed

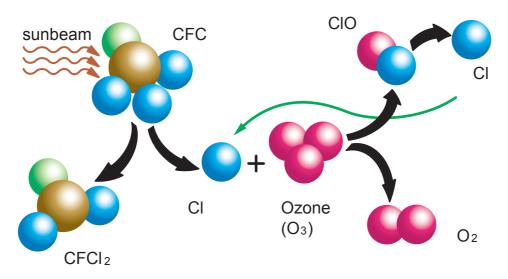
- We developed new synthetic oil, since HFC refrigerant doesn't dissolve in mineral (for R22)oil.
- Be careful to handle synthetic oil, since it resolves easily by moisture and contamination.
- Don't mix new synthetic oil and mineral oil. It may cause trouble.

3. PRECAUTION FOR SERVICING

Feature 1 Refrigerant oil is different from before.


R410A R22 Feature 2 New Refrigerant has Approx 1.6 times higher pressure than previous refrigerant.

R410A	Different point from previous one	Precaution on Tools
High Pressure * 1.6 times of R22.	 Diameter of Service port has been changed from 1/4 Flare to 5/16 Flare. JIS standard of flare process It became lager To keep thethickness of copper tube. (1/4,3/3=more than 0.8mm) 	 It requires the gauge manifold and charge hose exclusively for R410A. It requires the flare tool and torque wrench that satisfies New JIS standard. % Previous flare tool + flare adapter can be used as well.


4. NEW REFRIGERANT R410A

*What is HFC ?

Phase-out schedule of HCFC according to Montreal protocol

Ozone Layer depleting mechanism

What is CFC and HCFC?

CFC : Chloro-Fluoro-Carbon

High ODP(ozone depletion potential) chemical compound, including chlorine. (ODP:0.6-1.0) For example : R12 (for refrigerator and car air-conditioner)

HCFC : Hydro-Chloro-Fluoro-Carbon

Low ODP chemical compound, including chlorine and hydrogen. (ODP:0.02-01) For example : R22 (for air-conditioner)

HFC₃: Hydro-Fluoro-Carbon

R134a (for Car air conditioner) R407C (for air conditioner)

Refrigerant characteristics

	R410A	R407C	R22
Composition (wt%)	R32/R125 (50/50)	R32/R125/R134a (23/25/52)	R22 (100)
Boiling Point	- 51.4	- 43.6 - 40.8	
Behavior	near azeotrope	zeotrope	
Pressure at 54.5°C (kPa)	3,406	2,262	2,151
Temperature Glide (deg)	0.11	5.4	0
ODP	0	0	0.055

Summary of R407C and R410A characteristics

	R410A	R407C
Advantage	 higher system performance Near-Azeotropic refrigerant 	• similar pressure as R22 (possible to design large equipment)
Disadvantage	•1.6 times higher pressure than R22 (difficult to design against pressure resistance)	 Zeotropic refrigerant (handle with care)
Suitable for	Small Air-Conditioners	Large Air-Conditioners

*** Desighed pressure of R410A refrigerant**

Relation between R410A condensing temperature and saturated pressure.

< Pressure →Temp >			
Pressure (Mpa)	Temp (°C)		
2.20			
2.25	37.9 38.7		
2.30	39.6 40.5		
2.35	40.5		
2.40	41.3		
2.40 2.45	42.1		
2.55	43.8		
2.60	44.6		
2.65	45.3		
2.70	46.1		
2.75	46.8		
2.80	47.6		
2.80 2.85	48.3		
2.90	49.0		
2.95	49.8		
3.00	50.5		
3.05	51.2		
3.10	51.9		
3 15	52.6		
3.20	53.2		
3.25	53.9		
3.20 3.25 3.30	54.6		
3.35	55.3		
3.40	55.9		
3.45	56.5		
3.50	57.1		
2.55	57.8		
3.60	58.4		
3.65	59.0		
3.70	59.6		
3.75	60.2		
3.80	60.8		
3.85	61.4		
3.90	52.0		
3.95	62.5		
4.00	63.1		
4.05	63.6		
4.10	64.2		
4.15	64.8		

< Temp → Pressure >			
Temp (°C)	Pressure (Mpa)		
39	2.27		
40	2.27 2.32		
41	2.38		
42	2.44		
44	2.57 2.63		
45	2.63		
46	2.69		
47	2.76		
48	2.83 2.90		
49	2.90		
51	3.04		
51 52 53 54	3.11		
	3.04 3.11 3.18 3.26		
54	3.26		
56	3.41		
57	3.41 3.49		
58	3.57		
59	3.65		
61	3.82		
62	3.90		
63	3.99		
64	4.08		

OIL

- Use new synthetic oils such as ester because HFC series refrigerant has less solubility with mineral oils conventionally used for R22.
- As these new synthetic oils are easily influenced by moisture and dusts, they must be treated more carefully than the conventional lubricating oils.

CAUTION

For installation/servicing, take more precautions than the case of conventional refrigerants to avoid moisture and dusts entering the refrigerant circuit. Also, for storing parts, more precautions must be taken.

COMPRESSOR

- Use better grade of material for sliding parts for securing good lubrication of sliding part as HFC refrigerant does not contain chloride.
- Review insulating materials
- Increase pressure resistance strength

CAUTION

Check if the compressor is suitable for the refrigerant (model) when replacing. Complete welding within 15 minutes after opening the cap when replacing.

HEAT EXCHANGER

- · Review the water, contaminants controlling level
- Use thinner tube to increase pressure Increase capacity for resistance strength (only outdoor unit) improving performance

CAUTION

During storage, due care must be taken so that foreign matters such as dust and water do not enter.

4-WAY VALVE

Review materials

CAUTION

Check if the valve is suitable for the refrigerant (model) when replacing.

2, 3-WAY VALVE

· Review material O-ring, valve core seal for securing suitability with oil.

CAUTION

Check if the valve is suitable for the refrigerant (model) when replacing.

WALL MOUNTED type INVERTER

7. TROUBLE SHOOTING

- 1. When the unit does not operate at all (Operation lamp and Timer lamp do not light up)
- 2. Self Diagnosis Function (Either Operation lamp or Timer lamp is blinking)
 - * How to operate the self-diagnosis function
 - * Self- diagnosis table and Check points
- 3. Trouble shooting method
 - * Serial signal check
 - * IPM protection check
 - * Refrigeration cycle diagnosis

Does not operate at all (Operation Lamp and Timer Lamp do not light up)

[Notes in service]

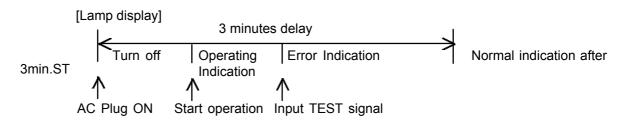
This model is non-insulated PCB that doesn't take the insulated structure on the PCB from this fiscal year. Be careful that it is likely to get a hock when it touches the charge part when checking. Moreover, there is a possibility of getting a shock even if it touches the secondary circuit of the display PCB or the stepping motor, etc.

[Check Point]

- (1) Is the input power voltage from the exclusive circuit AC outlet normal?
- (2) Is the AC plug inserted to the AC outlet securely and not loose?
- (3) Does not connected cable do wrong wiring?
- (4) Check if each connector is inserted securely.

[Checking Flow Chart]

SELF-DIAGNOSIS FUNCTION


This function memorizes the self-diagnosis function (lamp display) in the in door control P.C.Board when trouble occurs.

(The memory contents are not destroyed even when the power cord is unplugged from the AC outlet.) The self-diagnosis function (lamp display) can also be switched between major classification display and minor classification display and precise diagnosis can be made.

Self-diagnosis function [lamp display] (memory reading)

- (1) When error occurs, it is indicated by blinking [Operation lamp (Green)] and [Timer lamp (Orange)].
- (2) Upon pulling out and inserting the AC plug, the starts to operates from remote control. (At this state, a normal operation indication is performed.)
- (3) By pressing [TEST] button of remote control, [Error Indication] is indicated only during [3 minutes ST].

(3 minutes ST : 2 minutes 20 seconds from the timing AC plug is ON)

How to erase Memory

 While [Error indication] is ON by the self-diagnosis function, the memorized contents can be erased by pressing [Forced Auto Button] on the main unit. (Indoor unit buzzer beeps 3 seconds.)

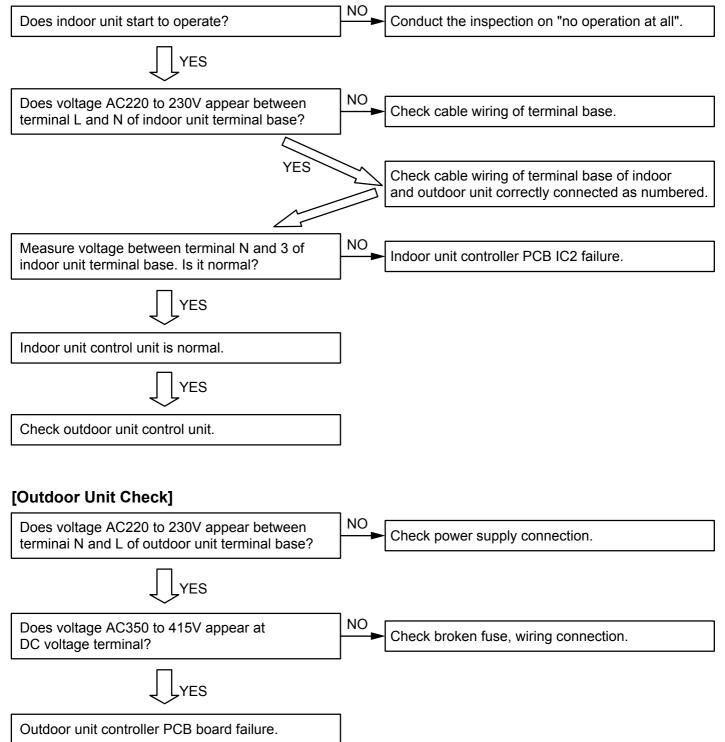
Error In	dication	Error	Diagnosis Method
Operation (GREEN)	Timer (ORANGE)	(Protection)	
OFF	0.5 sec 2 times	Serial reverse transfer error at starting up operation	At the start up, the indoor unit does not receive the signal for 10 consecutive seconds from the time when the power relay was ON. >Permanent stop after 30 seconds.
			 [Diagnosis Point] Check the indoor /outdoor cable connection (in order). If the cable wiring is not abnormal, measure the voltage of the outdoor unit terminals and diagnose the defective location. (Refer to the after mentioned [Serial Signal Diagnosis] for the voltage measuring method and diagnosis method.)
	0.5 sec 3 times	Serial reverse transfer error during the operation	When the indoor unit does not receive the signal for 10 consecutive seconds during the operation >Permanent stop after 30seconds.
			 [Diagnosis Point] Check the indoor /outdoor cable connection (in order). If the cable wiring is not abnormal, measure the voltage of the outdoor unit terminals and diagnose the defective location. (Refer to the after mentioned [Serial Signal Diagnosis] for the voltage measuring method and diagnosis method.)
	0.5 sec 4 times	Serial forward transfer error at starting up operation	 The outdoor unit does not receive the signal for 10 consecutive seconds from the time when the power relay was ON. >Outdoor unit stops. [Diagnosis Point] Check the indoor /outdoor cable connection (in order). If the cable wiring is not abnormal, measure the voltage of the outdoor unit terminals and diagnose the defective location. (Refer to the after mentioned [Serial Signal Diagnosis] for the voltage measuring method and diagnosis method.)
	0.5 sec 5 times	Serial forward transfer error during the operation	 When the outdoor unit does not receive the signal for 10 consecutive seconds during the operation > Outdoor unit stops. [Diagnosis Point] Check the indoor /outdoor cable connection (in order). If the cable wiring is not abnormal, measure the voltage of the outdoor unit terminals and diagnose the defective location. (Refer to the after mentioned [Serial Signal Diagnosis] for the voltage measuring method and diagnosis method.)
	0.5 sec 8 times	Wired remote controller error	 When the communication is cut off longer than 1 minutes upon connection. > Compressor, Outdoor fan : OFF (If the communication becames normal, they automatically resume operation. [Diagnosis Point] Check wiring Controller PCB failure
0.5 sec 2 times	b Demote control does not connected		[Diagnosis Point] • Check thermistor resistance value (Refer to "Themistor characteristics table").
	0.5 sec 3 times	Indoor heat exchanger thermistor error	The detection value of the indoor heat exchanger thermistor is either open or shoted when the power is ON. Remote control does not operate. [Diagnosis Point] Check thermistor resistance value (Refer to "Thermistor characteristic table"). Controller PCB defective.

Error Indication		Error	Diagnosis Method
Operation (GREEN)	Timer (ORANGE)	(Protection)	
0.5 sec 3 times	0.5 sec 2 times	Discharge thermistor error	The detection value of the discharge thermistor is either open or shorted. Compressor, outdoor fan : OFF (It automatically releases when the normal value is detected.) [Diagnosis Point] Check thermistor resistance value (Refer to "Themistor characteristics table"). Controller PCB defective.
	0.5 sec 3 times	Outdoor heat exchanger thermistor error	The detection value of the outdoor heat exchanger thermistor is either open or shorted. Compressor, outdoor fan : OFF (It automatically releases when the normal value is detected.) [Diagnosis Point] Check thermistor resistance value (Refer to "Themistor characteristics table"). Controller PCB defective.
	0.5 sec 4 times	Outdoor temperature ther- mistor error	The detection value of the outdoor temperature thermistor is either open or shorted. Compressor, outdoor fan : OFF (It automatically releases when the normal value is detected.) [Diagnosis Point] Check thermistor resistance value (Refer to "Themistor characteristics table"). Controller PCB defective.
0.5 sec 4 times	0.5 sec 2 times	Forced auto switch error	Forced auto switch becomes ON for 30 consecutive seconds. > It indicates the error but the operation continues. [Diagnosis Point] • Check if forced auto switch is kept pressed. • Forced auto switch defective. • Controller PCB defective.
	0.5 sec 3 times	Main relay error	After 2 minutes 20 seconds of stopping operation, the signal from outdoor unit is received even though the main relay is OFF. > Main relay OFF continues (outdoor unit OFF command) [Diagnosis Point] • Main relay defective • Controller PCB defective.

Error Ir	dication	Error	Diagnosis Method	
Operation (GREEN)	Timer (ORANGE)	(Protection)		
0.5 sec 5 times	0.5 sec 2 times	IPM protection	Abnormal current value of IPM is detected. > Permanent stop. [Diagnosis Point] • Heat radiation is blocked (inlet/outlet). • Check if outdoor fan is defetcive (does not rotate). • Controller PCB defective (Refer to after mentioned "IPM diagnosis"). • Refrigeration cycle defective (Refer to after mentioned "refrigeration cycle diagnosis").	
	0.5 sec 3 times	CT error	The current value during the operation after 1 minute from starting up the compressor is 0A. > permanent stop. [Diagnosis Point] • Controller PCB defective.	
	0.5 sec 5 times	Compressor location error	 The compressor speed does not synchronze with the control signal. (Including start up failure of the compressor). > permanent stop. [Diagnosis Point] Check if 2-way valve or 3-way valve is left open. Check the compressor (Winding resistance value, loose lead wire). Refrigeration cycle defective (Refer to after mentioned "refrigerant cycle diagnosis") 	
	0.5 sec 6 times	Outdoor fan error (DC motor)	Either the outdoor fan motor abnormal current or location error was detected. Permanent stop. [Diagnosis Point] Fan motor connector loose/ defective contact. Fan motor defective. Controller PCB defective. 	
0.5 sec 6 times	0.5 sec 2 times			
	0.5 sec 3 times	Indoor fan speed error	The indoor fan speed is 1/3 of the target frequency after 56 seconds from starting operation or from the time the fan mode was changed. > Operation stop. (It releases by sending the operation stop signal from the remote controller). [Diagnosis Point] • Fan motor connector loose /defective contact. • Fan motor defective • Controller PCB defective.	

Error In	dication	Error	Diagnosis Method	
Operation (GREEN)	Timer (ORANGE)	(Protection)		
0.5 sec 7 times	0.5 sec 2 times	Discharge temperature error	The discharge temperature error is activated. > Permanent stop. [Diagnosis Point] • Check if 2-way valve or 3-way valve is left open. • Heat radiation is blocked (Inlet /outlet). • Check if outdoor fan is defective (does not rotate). • Refrigeration cycle defective (Refer to after mentioned "refrigerant cycle disagnosis").	
	0.5 sec 3 times	Excessive high pressure protection on cooling	 Excessive high pressure protection on cooling mode has been activated. Compressor, outdoor fan : Off (It releases after 3 minute ST). [Diagnosis Point] Heat radiation is blocked (Inlet /outlet). Check if outdoor fan is defective (does not rotate). Refrigeration cycle defective (Refer to after mentioned "refrigerant cycle disagnosis"). 	
0.5 sec 8 times	0.5 sec 2 times	Active Filter Error (Permanent Stop)	Output voltage error of Active filter is detected. > Permanent stop. [Diagnosis Point] • Check the wiring connection (Connector is loose/open, Choke coil) • Controller PCB defective (Refer to after mentioned "Active Filter diagnosis")	
	0.5 sec 3 times			
0.5 sec 4 times PFC circuit error Excessive voltage of DC voltage on PFC circuit in inverter PCB is detected, or the permanent stop. [Diagnosis Point] • Controller PCB defective (Refer to after mentioned "PFC circuit diagnosis")		[Diagnosis Point]		

Serial Signal Receiving Error


[Check Point] Check which has a cause of error, either Indoor unit or Outdoor unit.

- * Remove indoor unit front panel and cable clampers and keep the terminal block clear so that it can be measured with a meter.
- * Remove AC power and reset the power, and press Test Operation switch on remote control.

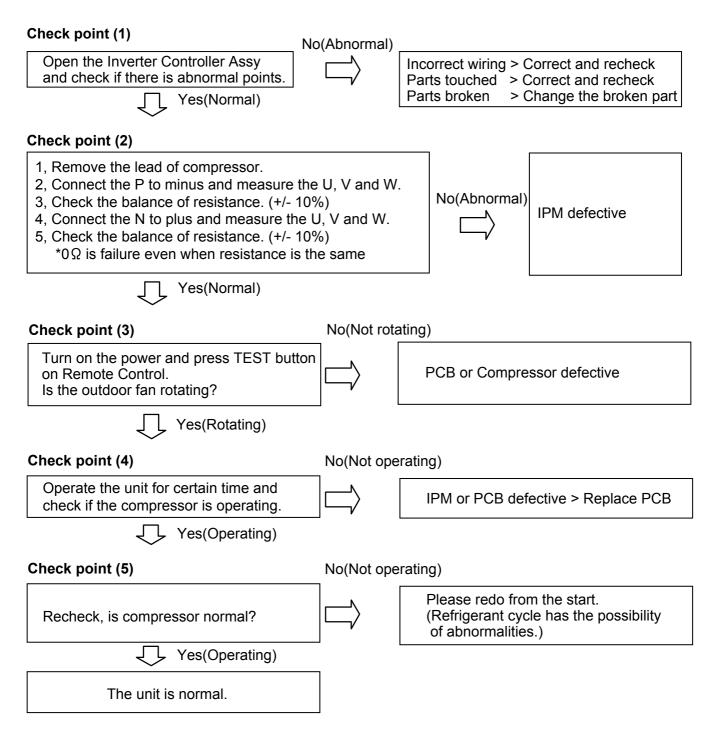
[Check Procedure]

CAUTION: Keep out hands from terminal base and electrical components. Voltage is applied on them and you may get electric shock.

[Indoor Unit Check]

IPM Protection

[Checking Points]


Check the following points and locate the cause in the outdoor unit.

[Cause]

- (1) Compressor failure
- (2) Refrigeration cycle failure
- (3) PC Board defective
- (4) IPM defective
- (5) Incorrect wiring

[First step]

Measure the DC voltage at terminals (between Electrolytic Capacitor and discharge resistance) in the Inverter Controller Assy, and make sure it is lower than DC5V. If it is higher than 5V, wait until the discharging is over.

Trouble Shooting of Refrigerant Cycle

[Diagnosis Table for Defective Component]

○ : Item of most possible cause

	IPM Protection	Compressor Location error	Discharge Temperature Error	Cooling High Pressure Protection
Refrigerant leak			0	
Compressor failure(*)	0	0		
EEV failure (*)	0	0	0	0
Thermistor failure (*)	0	0	0	0

(*) Trouble Shooting Method

(1) Checking method of the compressor failure

Insert the AC plug and start up the cooling operation. Input Test operation signal and check if the compressor operates.

If it does not operate, measure the resistance value of compressor windings between U-V, V-W, W-U. If any of the resistance value between U-V, V-W, W-U is not same as others, the compressor is defective.

Compressor Failure

	NORMAL	
AS*A07/ 09LGC	Compressor Case Temperature at 20°C: 0.740 ohm	
AS*A12LGC	Compressor Case Temperature at 20°C: 0.710 ohm	
AS*A14LGC	Compressor Case Temperature at 25°C: 0.477 ohm	

(The above resistance value is a typical value. There is some distribution. As it also changes by the compressor temperature, the measured value may be much different from the above table when measured right after stopping operation.)

(2) Checking method of EEV failure

Insert the AC plug and start up the operation. Check if the EEV operates just before compressor is turned on. (Touch EEV by hand and check it.)

If it does not operate, check if the coil or connector of EEV is removed or loose.

If it operates, check the discharge thermistor / outdoor heat exchanger thermistor / indoor heat exchanger thermistor. (Refer to (3) for checking method.)

(3) Checking method of Thermistor

Check each thermistor if it is removed or the connector is loose. If there is no problem, remove the connector of the thermistor from the PCB and check the resistance value. (refer to the thermitor characteristics table).

WALL MOUNTED type INVERTER

8. APPENDING DATA

- 1. Function setting
- 2. Jumper setting of Outdoor unit
- 3. Outdoor unit Pressure Value and Total Electric Current Curve
- 4. Thermistor Resistance Values
- 5. Capacity/ Input Data

8-1-1 INDOOR UNIT

- Follow the instructions in the Local Setup Procedure, which is supplied with the remote control, in accordance with the installed condition.
- After the power is turned on, perform the Function Setting on the remote control.
- The settings may be selected between the following two: Function Number or Setting Value.
- Settings will not be changed if invalid numbers or setting values are selected.

1-1. Setting the Room Temperature Correction for Cooling

Depending on the installed environment, the room temperature sensor may require a correction. The settings may be selected as shown in the table below.

		(•	i dotor y ootanig)
	Setting Description	Function Number	Setting Value
•	Standard	30	00
	Lower control		01

(**•** Factory setting)

1-2. Setting the Room Temperature Correction for Heating

Depending on the installed environment, the room temperature sensor may require a correction. The settings may be changed as shown in the table below.

		, , ,	, ,
	Setting Description	Function Number	Setting Value
•	Standard		00
	Lower control	31	01
	Slightly warmer control		02
	Warmer control		03

(**•** Factory setting)

1-3. Setting the Auto Restart

The following settings are also possible, depending on the operating conditions.

	(•···Factory setting			
	Setting Description	Function Number	Setting Value	
•	Yes	40	00	
	No	40	01	

(Factory setting)

1-4. Setting the Remoto control Signal Code

The following settings are also possible, depending on the operating conditions.

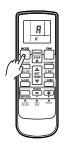
			Tactory setting)
	Setting Description	Function Number	Setting Value
Code A			00
	Code B	44	01
	Code C	44	02
	Code D		03

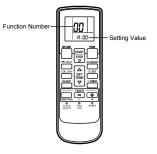
(Factory setting)

8-1-2 Procedures to change the Function Setting for wireless RC

- This procedure changes to the function settings used to control the indoor unit according to the installation conditions. Incorrect settings can cause the indoor unit malfunction.
- After the power is turned on, perform the "FUNCTION SETTING" according to the installation conditions using the remote controller.
- Settings will not be changed if invalid numbers or setting values are selected.

Entering the Function Setting Mode


• While pressing the FAN button and SET TEMP.(▲) simultaneously, press the RESET button to enter the function setting mode.


Selecting the Function Number and Setting Value

- (1) Press the MODE button, and proceed to Fanction Number and Setting Value.
 (There is no necessity for setting remote control signal code. Because signal code is setting by Fanction Number and Setting Value.)
- (2) Press the SET TEMP. (▲) (▼) buttons to select the Function Number. (Press the MODE button to switch between the left and right digits.)
- (3) Press the FAN button to proceed to Setting Value.(Press the FAN button again to return to the Function Number selection.)
- (4) Press the SET TEMP. (▲) (▼) buttons to select the Setting Value.
 (Press the MODE button to switch between the left and right digits.)
- (5) Press the TIMER MODE button. It makes a signal to indoor unit. (Indoor unit recognize the setting.)
- (6) Press the START/STOP button. It makes a signal to indoor unit. (Indoor unit run the setting.)
- (7) Press the RESET button to cancel the function setting mode.
- (8) After completing the FUNCTION SETTING, be sure to turn of the power and turn it on again.

After turning off the power, wait 10 seconds or more before turning on it again. The FUNCTION SETTING doesn't become effective if it doesn't do so.

Custom code setting for remote controller

- (1) Press the MODE button for more then 5 seconds.
- (2) Press the SET TEMP. (▲) (▼) buttons to change the signal code between A→b→c→d. Match the code on the display to the air conditioner signal code. (initially set to A)
- (3) Press the MODE button. (Return to normal display)

\wedge	CAUTION
	OAUTION.

If you change the setting of Fanction Number and Setting Value after setting custom code in remote controller, please set custom code in remote controller again.

The remote control unit resets to signal code A when the batteries in the remote control unit are replaced. If you use a signal code other than signal code A, reset the signal code after replacing the batteries.

If you do not know the air conditioner signal code setting, try each of the signal codes ($\frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2}$) until you find the code which operates the air conditioner.

8-2. JP(Jumper) SETTING

[Outdoor Unit]

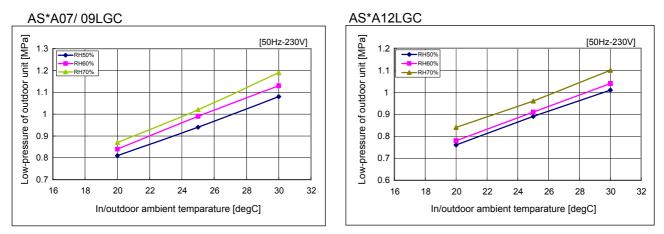
		JP			
		JM2	JM103	JM102	JM101
07LGC	Normal Preheat	0	×	×	×
	Higher Preheat	×	×	×	×
09LGC	Normal Preheat	0	×	×	0
	Higher Preheat	×	×	×	0
12LGC	Normal Preheat	0	×	Ó	×
	Higher Preheat	×	×	0	×

		JP			
		JM500	JM103	JM102	JM101
14LGC	Normal Preheat	0	0	×	×
	Higher Preheat	X	0	X	X

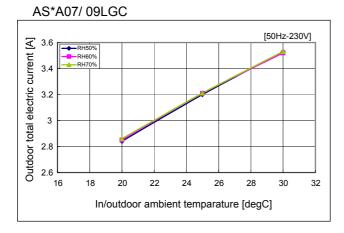
- it is possible to select the higher or standard level of preheating function.

- When it is set up at the higher level of preheat, the magnetic noise of the compressor becomes higher.

8-3-1 Cooling operation


Model Name : AS*A07/ 09/ 12LGC [Condition] Ambient Indoor / Outdoor - Same temperature temperature			
Refrigerant amount	Standard amount		
Piping length	5.0m (Height difference 1m)		
Power voltage	50Hz - 230V		
Operation condition	TEST mode (Cooling), Hi Fan, Horizontal direction, Front air flow		
Measuring method	Measure the low pressure with the pressure meter at the service valve. Measure the outdoor unit overall current with the current clamp meter at Power Cable.		

[Constant Frequency Operation Method (Test mode)]


1. Operate on Colling mode, and press TEST button of remote control.

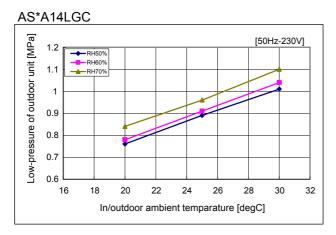
2. Operate continuously for 30 minutes. (After 60 minutes of operation, Test mode is released automatically.)

(1) Indoor/Outdoor Temperature - Outdoor Low Pressure Curve

(2) Indoor/Outdoor Temperature - Outdoor Total Electric Current Curve

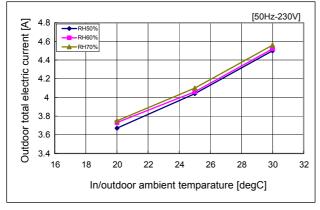
AS*A12LGC [50Hz-230V] 4.8 \leq -RH50% -RH60% Outdoor total electric current 4.6 -RH70% 4.4 4.2 4 3.8 3.6 3.4 16 18 20 22 24 26 28 30 32 In/outdoor ambient temparature [degC]

Model Name : AS*A14LGC


[Condition] Ambient temperatur	Indoor / Outdoor - Same temperature e
Refrigerant amount	Standard amount
Piping length	5.0m (Height difference 1m)
Power voltage	50Hz - 230V
Operation condition	TEST mode (Cooling), Hi Fan, Horizontal direction, Front air flow
Measuring method	Measure the low pressure with the pressure meter at the service valve. Measure the outdoor unit overall current with the current clamp meter at Power Cable.

[Constant Frequency Operation Method (Test mode)]

1. Operate on Colling mode, and press TEST button of remote control.


2. Operate continuously for 30 minutes. (After 60 minutes of operation, Test mode is released automatically.)

(1) Indoor/Outdoor Temperature - Outdoor Low Pressure Curve

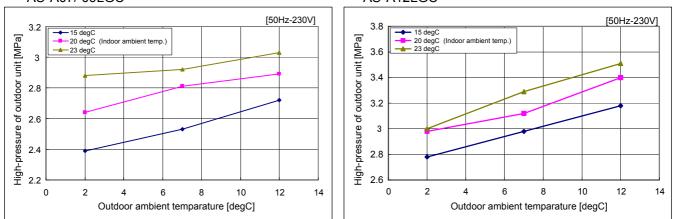
(2) Indoor/Outdoor Temperature - Outdoor Total Electric Current Curve

AS*A14LGC

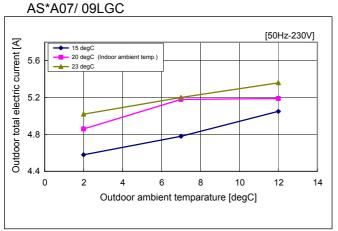
8-3-2 Heating operation

Model Name : AS*A07/ 09/ 12LGC [Condition]				
Ambient temperatu	Indoor 15, 20, 23degC, Outdoor 2, 7, 12degC r			
Refrigerant amount	Standard amount			
Piping length	5.0m (Height difference 1m)			
Power voltage	50Hz - 230V			
Operation condition	TEST mode (Heating), Hi Fan, Lower direction, Front air flow			
Measuring method	Measure the high pressure with the pressure meter at the service valve. Measure the outdoor unit overall current with the current clamp meter at Power Cable.			

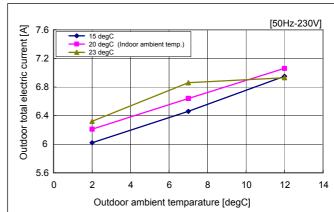
[Constant Frequency Operation Method (Test mode)]


1. Operate on Heating mode, and press TEST button of remote control.

2. Operate continuously for 30 minutes. (After 60 minutes of operation, Test mode is released automatically.)

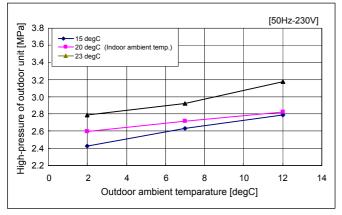

(1) Indoor/Outdoor Temperature - Outdoor High Pressure Curve

AS*A07/ 09LGC


AS*A12LGC

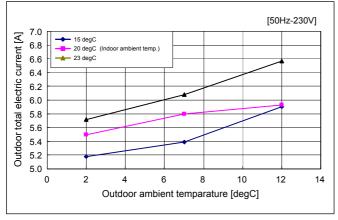
(2) Indoor/Outdoor Temperature - Outdoor Total Electric Current Curve

AS*A12LGC


Model Name : AS*A14LGC [Condition]				
Ambient temperatu	Indoor 15, 20, 23degC, Outdoor 2, 7, 12degC			
Refrigerant amount	Standard amount			
Piping length	5.0m (Height difference 1m)			
Power voltage	50Hz - 230V			
Operation condition	TEST mode (Heating), Hi Fan, Lower direction, Front air flow			
Measuring method	Measure the high pressure with the pressure meter at the service valve. Measure the outdoor unit overall current with the current clamp meter at Power Cable.			

[Constant Frequency Operation Method (Test mode)]

- 1. Operate on Heating mode, and press TEST button of remote control.
- 2. Operate continuously for 30 minutes. (After 60 minutes of operation, Test mode is released automatically.)


(1) Indoor/Outdoor Temperature - Outdoor High Pressure Curve

AS*A14LGC

(2) Indoor/Outdoor Temperature - Outdoor Total Electric Current Curve

AS*A14LGC

8-4. Thermistor Resistance Values

8-4-1 INDOOR UNIT

Room temperature thermistor			
Temp (°C)	$\text{Resistance}(k\Omega)$	Voltage(V)	
0.00	33.62	1.15	
5.00	25.93	1.39	
10.00	20.18	1.66	
15.00	15.84	1.94	
20.00	12.54	2.22	
25.00	10.00	2.50	
30.00	8.04	2.77	
35.00	6.51	3.03	
40.00	5.30	3.27	
45.00	4.35	3.48	
50.00	3.59	3.68	
55.00	2.98	3.85	
60.00	2.47	4.00	
65.00	2.09	4.14	
70.00	1.76	4.25	
75.00	1.49	4.35	
80.00	1.27	4.44	
85.00	1.09	4.51	
90.00	0.93	4.57	
95.00	0.81	4.63	
100.00	0.70	4.67	

Indoor heat exchanger thermistor			
Temp (°C)	$\text{Resistance}(k\Omega)$	Voltage(V)	
0.00	176.03	1.10	
5.00	134.23	1.36	
10.00	103.34	1.63	
15.00	80.28	1.92	
20.00	62.91	2.21	
25.00	49.70	2.51	
30.00	39.57	2.79	
35.00	31.74	3.06	
40.00	25.64	3.30	
45.00	20.85	3.53	
50.00	17.06	3.73	
55.00	14.10	3.90	
60.00	11.64	4.55	
65.00	9.69	4.19	
70.00	8.12	4.30	
75.00	6.83	4.40	
80.00	5.78	4.48	
85.00	4.91	4.55	
90.00	4.19	4.61	
95.00	3.59	4.66	
100.00	3.09	4.71	

8-4-2 OUTDOOR UNIT

Disc	harge thern	nistor
Temp (°C)	$Resistance(k\Omega)$	Voltage(V)
0.00	168.6	0.36
5.00	130.7	0.45
10.00	102.2	0.56
15.00	80.51	0.70
20.00	63.89	0.85
25.00	51.05	1.01
30.00	41.07	1.20
35.00	33.26	1.41
40.00	27.09	1.62
45.00	22.20	1.85
50.00	18.29	2.08
55.00	15.15	2.31
60.00	12.62	2.54
65.00	10.56	2.76
70.00	8.878	2.97
75.00	7.498	3.17
80.00	6.361	3.36
85.00	5.419	3.53
90.00	4.635	3.69
95.00	3.980	3.83
100.00	3.430	3.96
105.00	2.967	4.07
110.00	2.575	4.17
115.00	2.243	4.26
120.00	1.960	4.34

Outdoor he	eat exchange	r thermistor
Temp (°C)	$\text{Resistance}(k\Omega)$	Voltage(V)
-20.00	48.13	0.45
-15.00	36.07	0.58
-10.00	27.29	0.74
-5.00	20.84	0.93
0.00	16.05	1.14
5.00	12.45	1.38
10.00	9.736	1.64
15.00	7.672	1.91
20.00	6.090	2.19
25.00	4.869	2.47
30.00	3.918	2.74
35.00	3.173	3.00
40.00	2.586	3.24
45.00	2.120	3.46
50.00	1.747	3.66
55.00	1.448	3.83
60.00	1.206	3.99
65.00	1.009	4.12
70.00	0.849	4.24
75.00	0.717	4.34
80.00	0.608	4.43
85.00	0.518	4.51
90.00	0.444	4.57
95.00	0.381	4.63
100.00	0.328	4.68

Outdoor te	emperature th	nermistor
Temp (°C)	Resistance(k Ω)	
-20.00	101.7	1.37
-15.00	76.31	1.67
-10.00	57.73	1.99
-5.00	44.01	2.33
0.00	33.80	2.66
5.00	26.14	2.97
10.00	20.35	3.27
15.00	15.96	3.53
20.00	12.59	3.76
25.00	10.00	3.96
30.00	7.990	4.14
35.00	6.423	4.28
40.00	5.192	4.40
45.00	4.222	4.50
50.00	3.451	4.59
55.00	2.836	4.66
60.00	2.343	4.71
65.00	1.945	4.76
70.00	1.623	4.80
75.00	1.361	4.83
80.00	1.146	4.85
85.00	0.970	4.88
90.00	0.824	4.89
95.00	0.703	4.91
100.00	0.602	4.92

■ MODEL : AS*A07LGC

• COOLING

AFR 12.5

	°CDB		18			21			23			25			27			29			32	
	°CWB		12			15			16			18			19			21			23	
e	°CDB	TC	SHC	PI																		
atur	20	1.97	1.40	0.33	2.19	1.41	0.34	2.26	1.53	0.34	2.41	1.54	0.34	2.49	1.66	0.34	2.64	1.65	0.35	2.79	1.76	0.35
per	25	1.87	1.33	0.37	2.08	1.34	0.38	2.15	1.45	0.38	2.29	1.46	0.38	2.36	1.58	0.38	2.50	1.57	0.39	2.65	1.67	0.39
tem	30	1.76	1.26	0.41	1.97	1.26	0.42	2.03	1.37	0.42	2.17	1.38	0.42	2.23	1.49	0.43	2.37	1.48	0.43	2.50	1.58	0.44
oor	35	1.66	1.18	0.45	1.85	1.19	0.46	1.91	1.29	0.46	2.04	1.30	0.47	2.10	1.40	0.47	2.23	1.39	0.47	2.35	1.49	0.48
outd	40	1.48	1.05	0.45	1.65	1.06	0.46	1.70	1.15	0.46	1.82	1.16	0.47	1.87	1.25	0.47	1.98	1.24	0.47	2.10	1.32	0.48
0	43	1.37	0.98	0.45	1.53	0.98	0.46	1.58	1.07	0.46	1.68	1.07	0.47	1.74	1.16	0.47	1.84	1.15	0.47	1.94	1.23	0.48

AFR : Air flow rate (m^3/min)

TC : Total capacity (kW)

SHC : Sensible Heat capacity (kW)

PI : Power Input (kW)

HEATING

AFR

12.5

						In	door ter	nperatu	ire			
		°CDB	1	6	1	8	2	0	2	2	2	4
	°CDB	°CWB	ТС	PI	TC	PI	TC	PI	TC	PI	TC	PI
	-15	-16	2.25	0.99	2.19	1.01	2.14	1.03	2.09	1.05	2.03	1.07
temperature	-10	-11	2.56	1.02	2.50	1.04	2.43	1.06	2.37	1.08	2.31	1.11
Dera	-5	-7	2.93	1.05	2.86	1.07	2.79	1.10	2.72	1.12	2.65	1.14
emi	0	-2	3.47	1.09	3.39	1.12	3.31	1.14	3.23	1.16	3.14	1.19
	5	3	4.05	1.15	3.96	1.17	3.86	1.19	3.76	1.22	3.67	1.24
Outdoor	7	6	4.41	1.17	4.31	1.20	4.20	1.22	4.10	1.25	3.99	1.27
Ō	10	8	4.64	1.19	4.53	1.21	4.42	1.24	4.31	1.26	4.20	1.29
	15	10	4.81	1.18	4.69	1.20	4.58	1.23	4.46	1.25	4.35	1.27

AFR : Air flow rate (m³/min)

TC : Total capacity (kW)

■ MODEL : AS*A09LGC

COOLING

AFR 12.5

	°CDB		18			21			23			25			27			29			32	
	°CWB		12			15			16			18			19			21			23	
e	°CDB	TC	SHC	PI																		
atur	20	2.34	1.60	0.44	2.61	1.61	0.45	2.70	1.75	0.45	2.87	1.76	0.46	2.96	1.90	0.46	3.14	1.89	0.46	3.32	2.01	0.47
per	25	2.22	1.52	0.50	2.48	1.53	0.50	2.56	1.66	0.51	2.73	1.67	0.51	2.81	1.80	0.51	2.98	1.79	0.52	3.15	1.91	0.53
tem	30	2.10	1.44	0.55	2.34	1.44	0.56	2.42	1.57	0.56	2.58	1.58	0.57	2.66	1.70	0.57	2.82	1.70	0.58	2.98	1.81	0.58
oor	35	1.98	1.35	0.61	2.20	1.36	0.62	2.28	1.48	0.62	2.43	1.48	0.63	2.50	1.60	0.63	2.65	1.59	0.64	2.80	1.70	0.64
outd	40	1.76	1.20	0.61	1.96	1.21	0.62	2.03	1.32	0.62	2.16	1.32	0.63	2.23	1.43	0.63	2.36	1.42	0.64	2.50	1.51	0.64
0	43	1.63	1.12	0.61	1.82	1.12	0.62	1.88	1.22	0.62	2.00	1.22	0.62	2.07	1.32	0.63	2.19	1.32	0.63	2.31	1.40	0.64

AFR : Air flow rate (m^3/min)

TC : Total capacity (kW)

SHC : Sensible Heat capacity (kW)

PI : Power Input (kW)

HEATING

AFR

12.5

						In	door ter	nperatu	ire			
		°CDB	1	6	1	8	2	0	2	2	2	4
	°CDB	°CWB	ТС	PI	TC	ΡI	тс	PI	ТС	ΡI	ТС	PI
	-15	-16	2.25	0.99	2.19	1.01	2.14	1.03	2.09	1.05	2.03	1.07
temperature	-10	-11	2.56	1.02	2.50	1.04	2.43	1.06	2.37	1.08	2.31	1.11
Dera	-5	-7	2.93	1.05	2.86	1.07	2.79	1.10	2.72	1.12	2.65	1.14
emi	0	-2	3.47	1.09	3.39	1.12	3.31	1.14	3.23	1.16	3.14	1.19
	5	3	4.05	1.15	3.96	1.17	3.86	1.19	3.76	1.22	3.67	1.24
Outdoor	7	6	4.41	1.17	4.31	1.20	4.20	1.22	4.10	1.25	3.99	1.27
Ō	10	8	4.64	1.19	4.53	1.21	4.42	1.24	4.31	1.26	4.20	1.29
	15	10	4.81	1.18	4.69	1.20	4.58	1.23	4.46	1.25	4.35	1.27

AFR : Air flow rate (m³/min)

TC : Total capacity (kW)

■ MODEL : AS*A12LGC

COOLING

AFR 12.5

	°CDE		18			21			23			25			27			29			32	
	°CWE	;	12			15			16			18			19			21			23	
e	°CDB	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI												
atur	20	3.18	2.20	0.61	3.55	2.21	0.62	3.67	2.41	0.63	3.91	2.41	0.63	4.03	2.61	0.64	4.27	2.60	0.64	4.51	2.77	0.65
per	25	3.03	2.09	0.70	3.37	2.11	0.71	3.49	2.29	0.71	3.72	2.30	0.72	3.83	2.48	0.72	4.06	2.47	0.73	4.29	2.63	0.74
tem	30	2.86	1.98	0.78	3.19	1.99	0.79	3.30	2.17	0.79	3.52	2.17	0.80	3.63	2.35	0.81	3.84	2.34	0.81	4.06	2.49	0.82
oor	35	2.69	1.86	0.86	2.99	1.87	0.88	3.09	2.03	0.88	3.30	2.04	0.89	3.40	2.20	0.895	3.60	2.19	0.90	3.81	2.33	0.91
outd	40	2.27	1.57	0.80	2.53	1.58	0.82	2.62	1.72	0.82	2.79	1.72	0.83	2.87	1.86	0.83	3.05	1.85	0.84	3.22	1.97	0.85
0	43	2.09	1.45	0.80	2.33	1.45	0.82	2.41	1.58	0.82	2.57	1.59	0.83	2.65	1.71	0.83	2.81	1.71	0.84	2.96	1.82	0.85

AFR : Air flow rate (m³/min)

TC : Total capacity (kW)

SHC : Sensible Heat capacity (kW)

PI : Power Input (kW)

HEATING

AFR

12.5

						In	door ter	nperatu	ire			
		°CDB	1	6	1	8	2	0	2	2	2	4
	°CDB	°CWB	ТС	PI	TC	ΡI	тс	PI	ТС	ΡI	ТС	PI
	-15	-16	3.40	1.72	3.32	1.76	3.24	1.80	3.16	1.83	3.07	1.87
temperature	-10	-11	3.76	1.72	3.67	1.76	3.58	1.79	3.49	1.83	3.40	1.86
Dera	-5	-7	4.18	1.72	4.08	1.76	3.98	1.79	3.88	1.83	3.78	1.87
emi	0	-2	4.68	1.72	4.57	1.76	4.46	1.80	4.35	1.83	4.24	1.87
	5	3	5.05	1.52	4.93	1.55	4.81	1.58	4.69	1.61	4.57	1.64
Outdoor	7	6	5.36	1.51	5.23	1.54	5.10	1.57	4.97	1.60	4.85	1.63
Ō	10	8	5.55	1.51	5.42	1.54	5.29	1.57	5.16	1.60	5.02	1.63
	15	10	5.54	1.41	5.41	1.44	5.28	1.47	5.15	1.50	5.01	1.53

AFR : Air flow rate (m³/min)

TC : Total capacity (kW)

■ MODEL : AS*A14LGC

COOLING

AFR 13.3

	°CDB		18			21			23			25			27			29			32	
	°CWB		12			15			16			18			19			21			23	
e	°CDB	TC	SHC	PI																		
atur	20	3.72	2.58	0.75	4.14	2.60	0.76	4.29	2.83	0.77	4.57	2.83	0.78	4.71	3.06	0.78	4.99	3.05	0.79	5.28	3.25	0.80
per	25	3.55	2.46	0.85	3.95	2.48	0.86	4.08	2.69	0.87	4.35	2.70	0.87	4.49	2.92	0.88	4.76	2.91	0.89	5.03	3.10	0.90
tem	30	3.36	2.34	0.94	3.75	2.35	0.96	3.87	2.55	0.96	4.13	2.56	0.97	4.26	2.77	0.98	4.51	2.76	0.99	4.77	2.94	1.00
oor	35	3.16	2.19	1.04	3.52	2.21	1.06	3.64	2.40	1.06	3.88	2.41	1.07	4.00	2.60	1.08	4.24	2.59	1.09	4.48	2.76	1.10
outd	40	2.78	1.93	1.03	3.09	1.94	1.04	3.20	2.11	1.05	3.41	2.12	1.06	3.51	2.28	1.06	3.73	2.28	1.08	3.94	2.42	1.09
0	43	2.53	1.76	1.01	2.82	1.77	1.03	2.91	1.92	1.03	3.11	1.93	1.04	3.20	2.08	1.05	3.39	2.07	1.06	3.59	2.21	1.07

AFR : Air flow rate (m³/min)

TC : Total capacity (kW)

SHC : Sensible Heat capacity (kW)

PI : Power Input (kW)

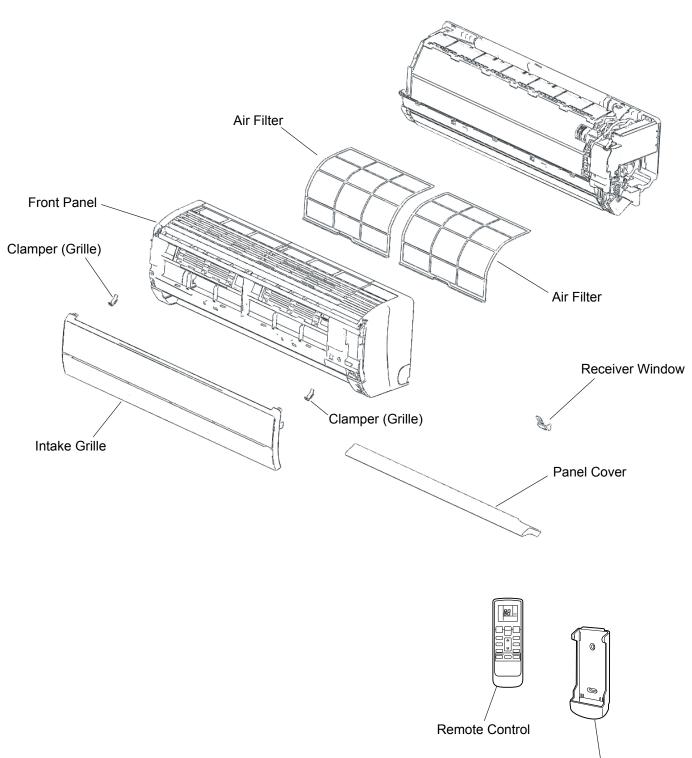
HEATING

AFR

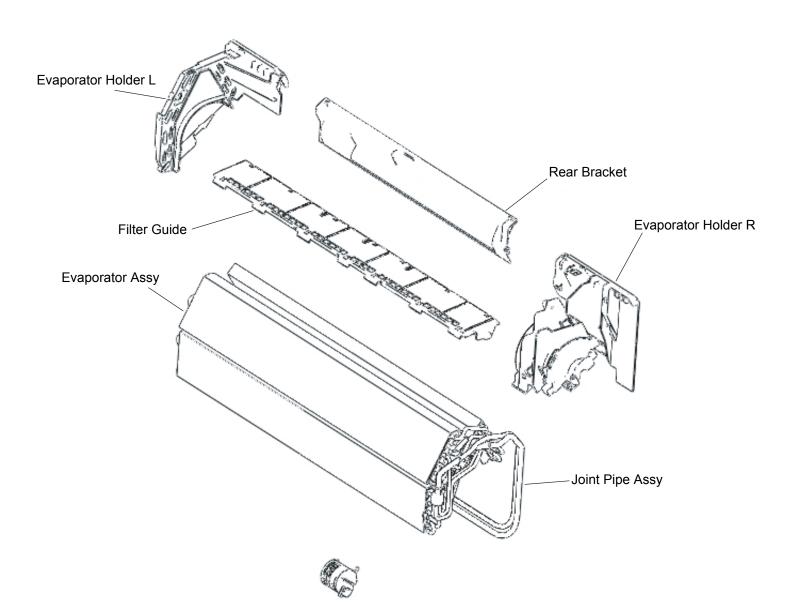
13.3

						In	door ter	mperatu	ire			
		°CDB	1	6	1	8	2	20	2	2	2	4
	°CDB	°CWB	TC	PI	TC	ΡI	тс	PI	TC	PI	TC	PI
	-15	-16	3.26	1.69	3.19	1.72	3.11	1.76	3.03	1.79	2.95	1.83
temperature	-10	-11	3.72	1.77	3.63	1.81	3.54	1.84	3.45	1.88	3.36	1.92
Dera	-5	-7	4.21	1.85	4.11	1.89	4.01	1.93	3.91	1.97	3.81	2.01
emp	0	-2	4.85	1.97	4.74	2.02	4.62	2.06	4.51	2.10	4.39	2.14
	5	3	5.33	1.91	5.21	1.95	5.08	1.99	4.95	2.03	4.83	2.07
Outdoor	7	6	5.57	1.92	5.43	1.96	5.30	2.00	5.17	2.04	5.04	2.08
Ō	10	8	5.66	1.83	5.53	1.87	5.39	1.91	5.26	1.95	5.12	1.99
	15	10	5.72	1.77	5.59	1.81	5.45	1.85	5.31	1.88	5.18	1.92

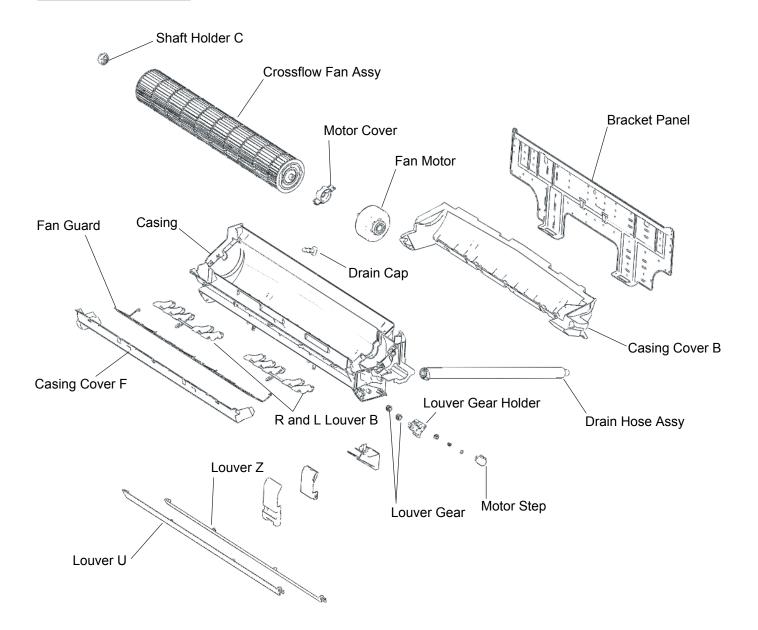
AFR : Air flow rate (m³/min)

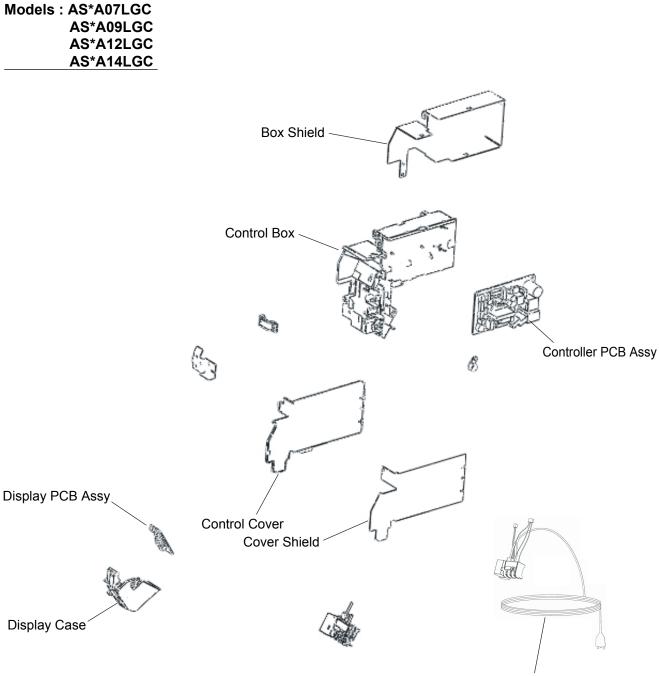

TC : Total capacity (kW)

WALL MOUNTED type INVERTER


9. REPLACEMENT PARTS

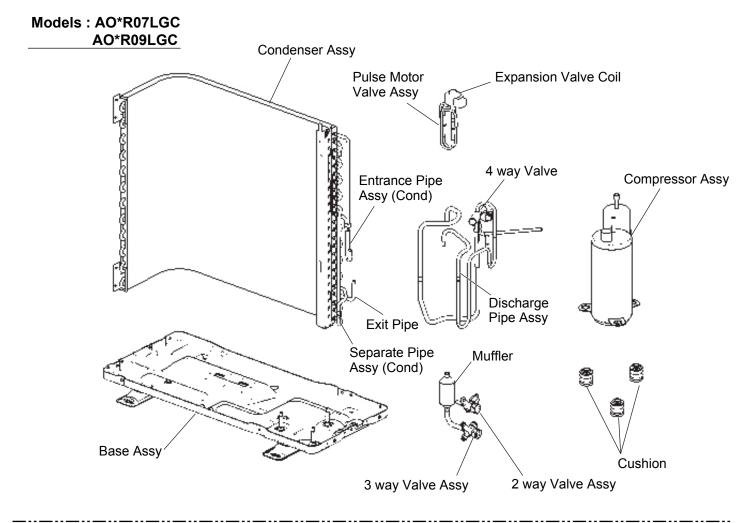
Models : AS*A07LGC AS*A09LGC AS*A12LGC AS*A14LGC

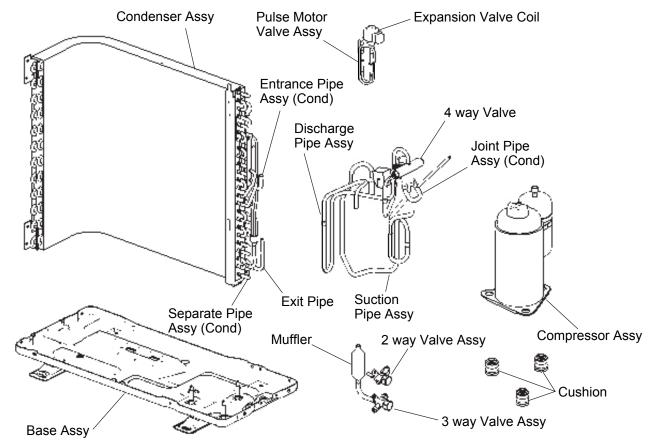


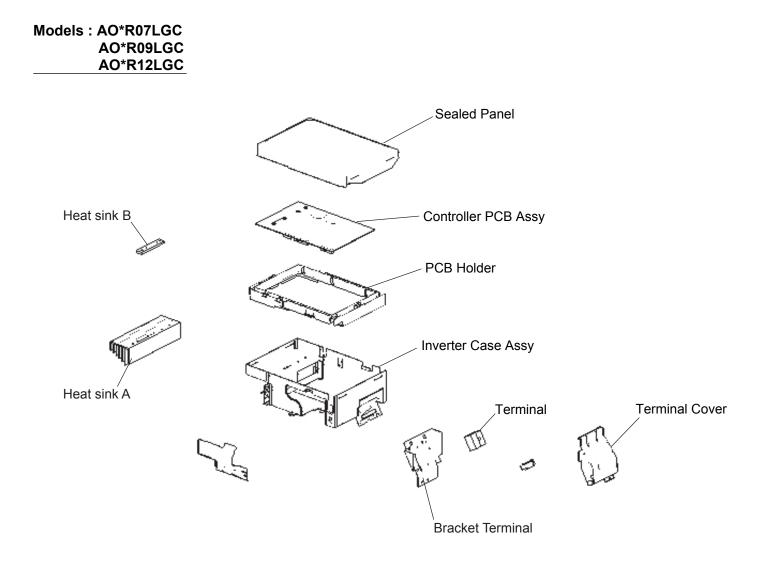

Remote Control Holder

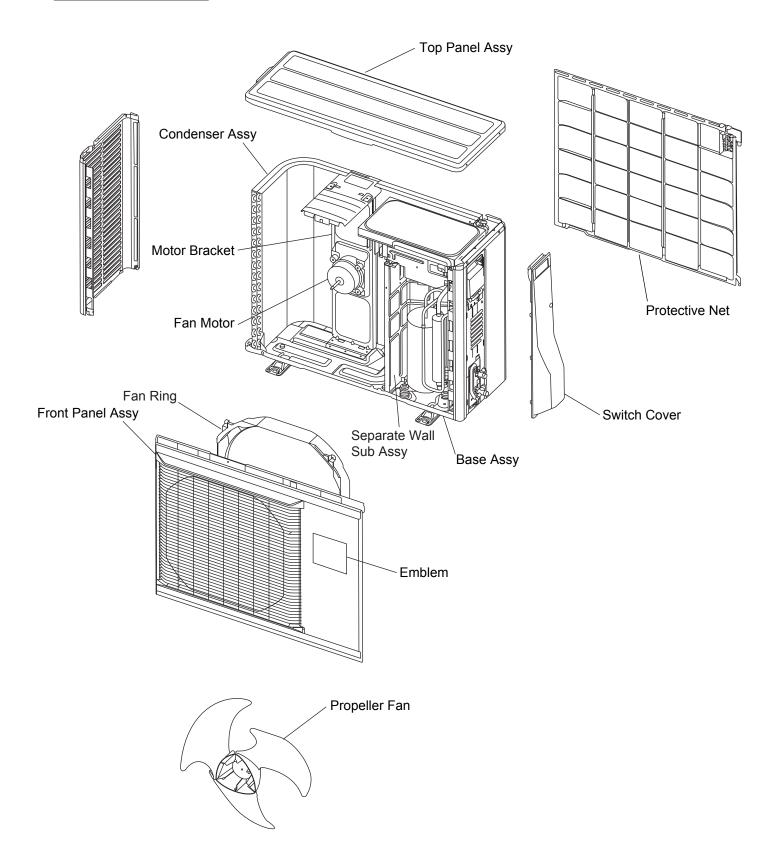
Models : AS*A07LGC AS*A09LGC AS*A12LGC AS*A14LGC

Models : AS*A07LGC AS*A09LGC AS*A12LGC AS*A14LGC

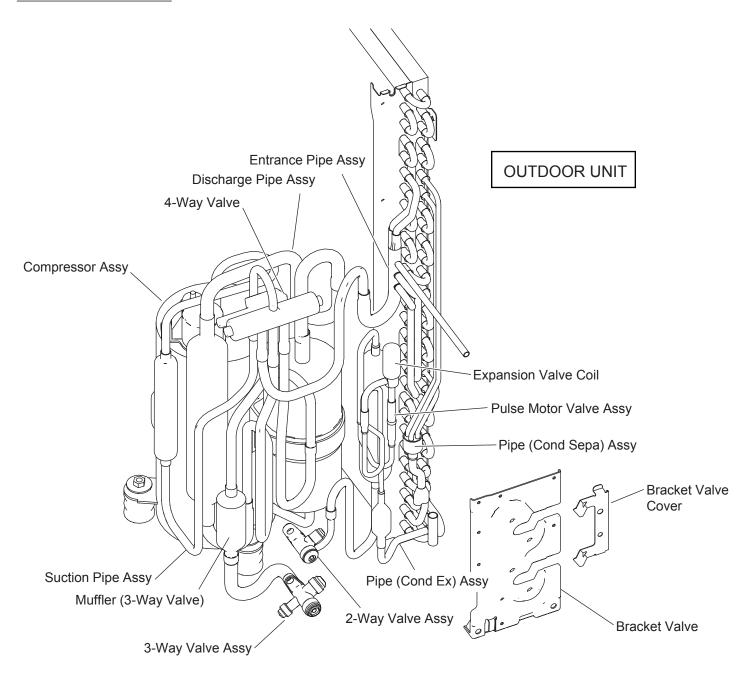


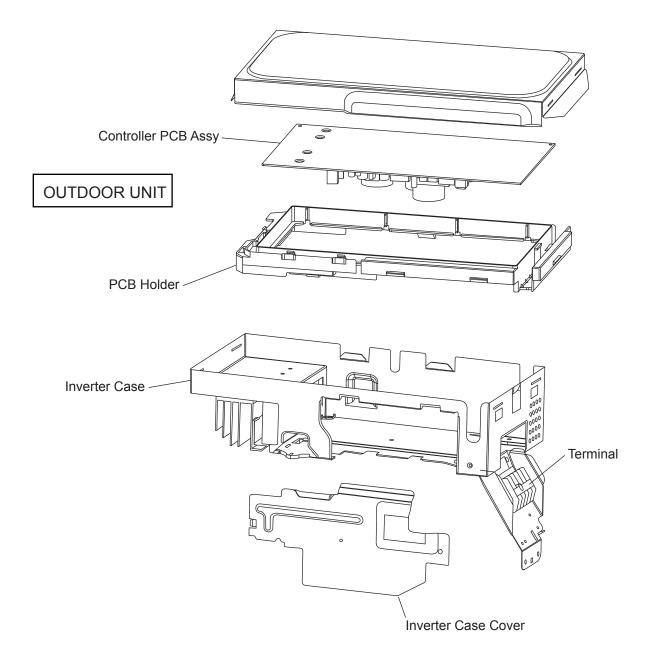

Power Cord Assy


Models : AO*R07LGC AO*R09LGC AO*R12LGC



Models : AO*R12LGC




Models : AO*R14LGC

Models : AO*R14LGC

Models : AO*R14LGC

WALL MOUNTED type INVERTER

10. INSTALLATION MANUAL

SPLIT TYPE ROOM AIR CONDITIONER **INSTALLATION MANUAL**

(PART NO. 9317265003-01)

This air conditioner uses new refrigerant HFC (R410A).

The basic installation work procedures are the same as conventional refrigerant (R22) models. However, pay careful attention to the following points:

- (1) Since the working pressure is 1.6 times higher than that of conventional refrigerant (R22) models, some of the piping and installation and service tools are special.(See the table below.) Especially, when replacing a conventional refrigerant (R22) model with a new refrigerant R410A model, always replace the conventional piping and flare nuts with the R410A piping and flare nuts.
- (2) Models that use refrigerant R410A have a different charging port thread diameter to prevent erroneous charging with conventional refrigerant (R22) and for safety. Therefore, check beforehand.[The charging port thread diameter for R410A is 1/2 threads per inch.]
- (3) Be more careful that foreign matter (oil, water, etc.) does not enter the piping than with refrigerant (R22) models. Also, when storing the piping , securely seal the opening by pinching , taping, etc.
- (4) When charging the refrigerant, take into account the slight change in the composition of the gas and liquid phases, and always charge from the liquid phase side whose composition is stable.

Special tools for R410A

Tool name	Contents of change						
Gauge manifold	Pressure is high and cannot be measured with a conventional gauge. To prevent erroneous mixing of other refrigerants, the diameter of each port has been changed. It is recommended the gauge with seals-0.1 to 5.3 MPa (-1 to 53 bar) for high pressure. -0.1 to 3.8 MPa (-1 to 38 bar) for low pressure.						
Charge hose	To increase pressure resistance, the hose material and base size were changed.						
Vacuum pump	A conventional vacuum pump can be used by installing a vacuum pump adapter.						
Gas leakage detector							

Copper pipes

(1) Do no

It is necessary to use seamless copper pipes and it is desirable that the amount of residual oil is less than 40 mg/10m. Do not use copper pipes having a collapsed, deformed or discolored portion (especially on the interior surface). Otherwise, the expansion value or capillary tube may become blocked with contaminants.

Table 1	Thicknesses of Annealed Copper Pipes
---------	--------------------------------------

		Thickne	ss (mm)
Nominal diameter	Outer diameter (mm)	R410A	[ref.] R22
1/4	6.35	0.80	0.80
3/8	9.52	0.80	0.80

As an air conditioner using R410A incurs pressure higher than when using R22, it is necessary to choose adequate materials.

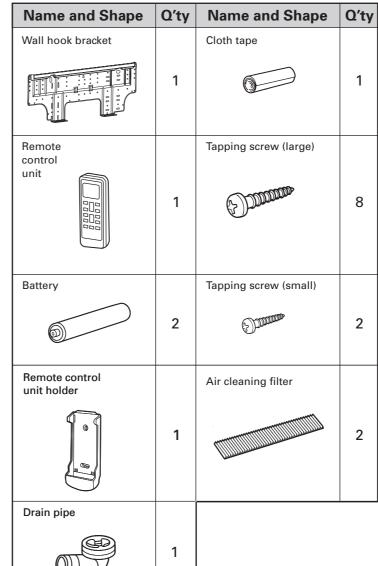
Thicknesses of copper pipes used with R410A are as shown in Table1. Never use copper pipes thinner than 0.8mm even when it is available on the market.

Do not use the existing (for R22) piping and flare nuts.
 If the existing materials are used, the pressure inside the refrigerant cycle will rise and cause breakage, injury, etc.(Use the special R410A materials.)

- (2) When installing and relocating the air conditioner, do not mix gases other than the specified refrigerant(R410A) to enter the refrigerant cycle.
 - If air or other gas enters the refrigerant cycle, the pressure inside the cycle will rise to an abnormally high value and cause breakage, injury, etc.

When installing pipes shorter than 3m, sound of the outdoor unit will be transferred to the indoor unit, which will cause large operating sound or some abnormal sound.

For authorized service personnel only.


(1)	For the room air conditioner to operate satisfactory, install it as outlined in this installation manual.
(2)	Connect the indoor unit and outdoor unit with the air conditioner piping and cords available standards parts. This
	installation manual describes the correct connections using the standard accessories and the parts specified in
	this installation manual.
(3)	Have installation work done by authorized service personnel only.
(4)	Never cut the power cord, lengthen or shorten the cord, or change the plug.
(5)	Also do not use an extension cord.
(6)	Plug in the power cord plug firmly. If the receptacle is loose, repair it before using the room air conditioner.
(7)	Do not turn on the power until all installation work is complete.

• Be careful not to scratch the air conditioner when handling it.

- After installation, explain correct operation to the customer, using the operating manual.
- Let the customer keep this installation manual because it is used when the air conditioner is serviced or moved.
- The maximum length of the piping is 20 m. The maximum height difference of the piping is 15 m, if the units are further apart than these, correct operation can not be guaranteed.

STANDARD ACCESSORIES

The following installation accessories are supplied. Use them as required.

One set of following parts are necessary in istallation of this product.

Name
Connection pipe assembly
Connection cord
Wall pipe
Decorative tape
Vinyl tape
Wall cap
Saddle
Drain hose
Tapping screws
Sealant

ELECTRICAL REQUIREMENT

Always make the air conditioner power supply a special branch circuit and provide a special switch and receptacle. Do not extend the power cord.

- SELECTING THE MOUNTING \neg $_{\Box}$ INSTALLATION DIAGRAM OF -POSITION

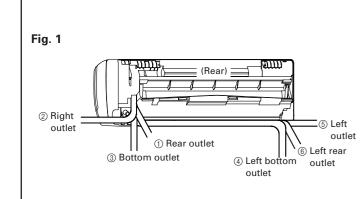
Decide the mounting position with the customer as follows:

1. INDOOR UNIT

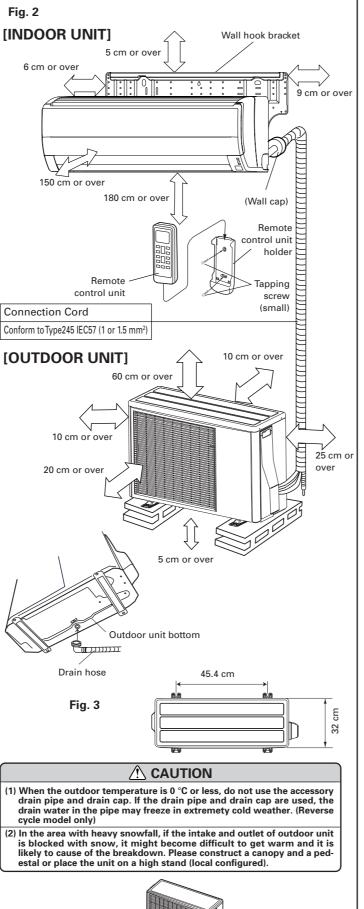
- (1) Install the indoor unit level on a strong wall which is not subject to vibration.
- (2) The inlet and outlet ports should not be obstructed : the air should be able to blow all over the room.
- (3) Install the unit near an electric outlet or special branch circuit.
- (4) Do not install the unit where it will be exposed to direct sunlight.
- (5) Install the unit where connection to the outdoor unit is easy.
- (6) Install the unit where the drain pipe can be easily installed.
- (7) Take servicing, etc. into consideration and leave the spaces shown in (Fig. 2). Also install the unit where the filter can be removed.

2. OUTDOOR UNIT

- (1) If possible, do not install the unit where it will be exposed to direct sunlight. (If necessary, install a blind that does not interfere with the air flow.)
- (2) Do not install the unit where a strong wind blows or where it is very dustv.
- (3) Do not install the unit where people pass.
- (4) Take you neighbors into consideration so that they are not disturbed by air blowing into their windows or by noise.
- (5) Provide the space shown in Fig. 2 so that the air flow is not blocked. Also for efficient operation, leave open three of the four directions front, rear, and both sides.


Install at a place that can withstand the weight of the indoor and outdoor units and install positively so that the units will not topple or fall.

	CAUTION
(1)	Do not install where there is the danger of com-
	bustible gas leakage.
(2)	De net install near heat courses


- (2) Do not install near heat sources. (3) If children under 10 years old may approach the unit, take preventive measures so that they can not reach the unit.
- (4) Install the indoor unit on the wall where the height from the floors more than 180 cm.

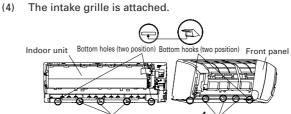
[Indoor unit piping direction]

The piping can be connected in the six directions indicated in (Fig. 1). When the piping is connected in direction (2), (3), (4) or (5), cut along the piping groove in the side of the front cover with a hacksaw.

- (1) Open the intake grille (2) Pull down the knob.
- (3) Lift the intake grille upward, until the axle at the top of the intake grille is removed.

INTAKE GRILLE INSTALLATION

(1) The fixing axle of the intake grille is installed on the Panel. (2) Lay down the intake grille.


FRONT PANEL REMOVAL

- Remove intake grille (Reference the intake grille removal.) (1) Remove wire cover. (2)
- (3) Remove three screws
- The front panel is pulled to the front, raising the upper surface, (4) and a front panel is removed.

THE FRONT PANEL INSTALLATION

- Firstly, fit the lower part of the front panel, and insert top and (1) bottom hooks. (Three top sides, eight bottom sides)
- (2) Three screws is attached. (3)
- The wire cover is attached.

(six position

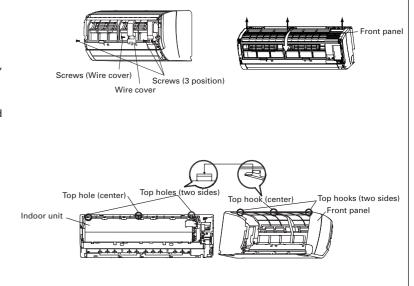
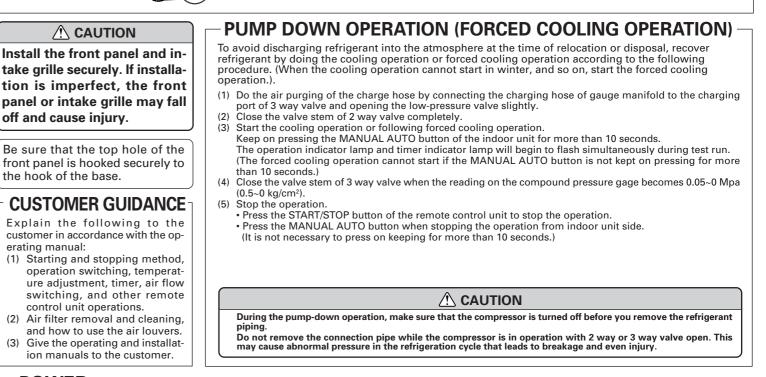



Fig. 4

POWER

	e rated voltage of this product is 230 V AC 50 Hz.	(5)	Do not out on data a new or and
A) D ((-)	Do not extend the power cord.
	fore turning on the power, check if the voltage is within the 0 V -10 % to 240 V +10 % range.	(6)	Perform wiring work in accordance with standards so that th air conditioner can be operated safely and correctly.
	ways use a special branch circuit and install a special ceptacle to supply power to the room air conditioner.	(7)	Install a leakage circuit breaker in accordance with the relate laws and regulations and electric company standards.
	e a circuit breaker and receptacle matched to the capacity of e air conditioner.		

current contracted capacity is insufficient, change the contracted capacity. (2)

When the voltage is low and the air conditioner is difficult to start, contact the power company for increasing the voltage.

INDOOR UNIT

CUTTING THE HOLE IN THE WALL FOR THE CONNECTING PIPING

Center mark

Fasten with

vinyl tape

(Wall cap)

65 mm dia. hole

(Wall pipe)

- (1) Cut a 65 mm diameter hole in the wall at the position shown in (Fig. Fig. 5
- (2) When cutting the wall hole at the inside of the installation frame, cut the hole within the range of the left and right center marks of the at least 10 r installation frame
- When cutting the wall hole at the outside of the installation frame, cut the hole at least 10 mm lower.
- (3) Cut the hole so that the outside end is lower (5 to 10 mm) than the inside end.
- (4) Always align the center of the wall hole. If misaligned, water leakage will occur
- (5) Cut the wall pipe to match the wall thickness, stick it into the wall cap, fasten the cap with vinyl tape, and stick the pipe through the hole. (The connection pipe is supplied in the installation set.) (Fig. 5) (6) For left piping and right piping, cut the hole a little lower so that drain
- water will flow freely. (Fig. 5)

INSTALLING THE WALL HOOK BRACKET

- (1) Install the wall hook bracket so that it is correctly positioned horizon-Fig. 6 tally and vertically. If the wall hook bracket is tiled, water will drip to the floor.
- (2) Install the wall hook bracket so that it is strong enough to withstand the weight of an adult.
- Fasten the wall hook bracket to the wall with 6 or more screws through the holes near the outer edge of the bracket.
- Check that there is no rattle at the wall hook bracket.

(Inside) Wall (Outside) Wall hook bracket Tapping screw

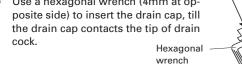
△ CAUTION

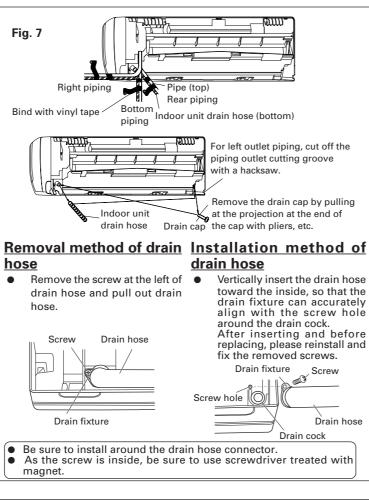
FORMING THE DRAIN HOSE AND PIPE

- [Rear piping, Right piping, Bottom piping]
- Install the indoor unit piping in the direction of the wall hole and bind the drain hose and pipe together with vinyl tape. (Fig. 7)
- Install the piping so that the drain hose is at the bottom. • Wrap the pipe of the indoor unit that visible from the outside with decorative tape

[For Left rear piping, Left piping]

Interchange the drain cap and the drain hose


- In order to align the drain hose and drain cap, be sure to insert securely and vertically. ncline insertion will cause water leakage.
- When inserting, be sure not to attach any material besides water. If any other material is attached, it will cause deterioration and water leakage.
- After removing drain hose, be sure not to forget mounting drain cap.
- Be sure to fix the drain hose with tape to the bottom of piping.


No gap

Drain cock

Drain cap

- For left piping and left rear piping, align the marks on the wall hook bracket and shape the connection pipe.
- Bend the connection piping at the bend radius of 70 mm or more and install no more than 35 mm from the wall
- After passing the indoor piping and drain hose through the wall hole, hang the indoor unit on the hooks at the top and bottom of the wall hook bracket.

[Installing the indoor unit]

- Hang the indoor unit from the hooks at the top of the wall hook bracket. Insert the spacer, etc. between the indoor unit and the wall hook bracket and separate the bottom of the indoor unit from the wall.
 - Indoor uni Spacer) Wall hook bracket

CONNECTING THE PIPING

CONNECTION

- (1) Install the outdoor unit wall cap (supplied with the optional installation set or procured at the site) to the wall pipe.
- (2) Connect the outdoor unit and indoor unit piping
- (3) After matching the center of the flare surface and tightening the nut hand tight, tighten the nut to the specified tightening torque with a torque wrench.

FLARING

(Table 2)

at least 10 mm lowe

65 mm dia. hole

- Check if [L] is flared uniformly (1) Cut the connection pipe to the necessary length with a pipe cutter.
- (2) Hold the pipe downward so that cuttings will not enter the pipe and remove the burrs.
- (3) Insert the flare nut onto the pipe and flare the pipe with a flaring tool

Insert the flare nut (always use the flare nut

attached to the indoor and outdoor units respectively) onto the pipe and perform the flare processing with a flare tool. Use the special R410A flare tool, or the conventional (for R22) flare tool.

When using the conventional flare tool, always use an allowance adjustment gauge and secure the A dimension shown in table 3

nnection pipe Table 2 Flare nut tightening torque

Fig. 9

Fig. 8

Connection pipe

pushing it against the wall.

(6.35 mm dia.)

Flare nut	Tightening torque
6.35 mm dia.	15.7 to 17.6 N ⋅ m (160 to 180 kgf ⋅ cm)
9.52 mm dia.	29.4 to 41.1 N ⋅ m (300 to 420 kgf ⋅ cm)

Align the marks

Top hooks Wall hook bracket

To prevent gas leakage, coat the flare

surface with refrig

Bottom hooks

pipe (9.52 mm dia.)

After hooking the indoor unit to the top hook, hook the fittings of the

indoor unit to the two bottom hooks while lowering the unit and

Bend (R70) with Connection

a pipe bender

Indoor unit

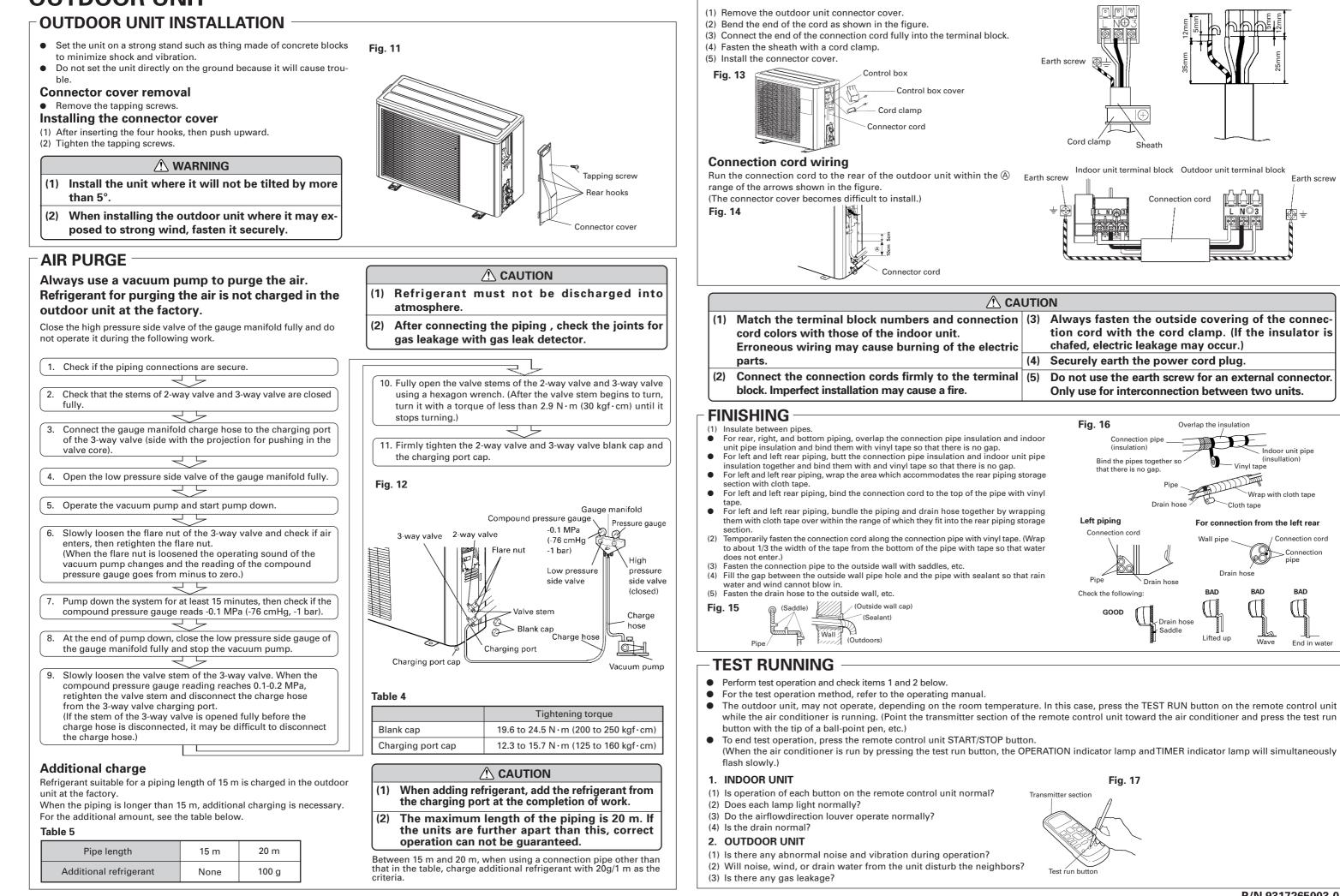
Tighten with two wrenches.

Table 3 Pipe outside diameter

Pipe outside		A (mm)		
	diameter	Flare tool for	Conventional (R22) flare tool	
	alamotor	R410A, clutch type	Clutch type	Wing nut type
	ø 6.35 mm (1/4")	0 to 0.5	1.0 to 1.5	1.5 to 2.0
	ø 9.52 mm (3/8")	0 to 0.5	1.0 to 1.5	1.5 to 2.0

(1) Fasten a flare nut with a torque wrench as instructed in this manual. If fastened too tight, the flare nut may be broken after a long period of time and cause a leakage of refrigerant.

(2) During installation, make sure that the refrigerant pipe is attached firmly before you run the compressor. Do not operate the compressor under the condition of refrigerant piping not attached properly with 2-way or 3-way valve open. This may cause abnormal pressure in the refrigeration cycle that leads to breakage and even injury.


(3) Connect the end of the connection cord fully into the terminal block.

INDOOR UNIT WIRING

(1) Remove the cord clamp. (2) Bend the end of the connection cord as shown in the figure.

OUTDOOR UNIT

P/N 9317265003-01

SPLIT TYPE ROOM AIR CONDITIONER INSTALLATION MANUAL

(PART NO. 9317265027-01)

This air conditioner uses new refrigerant HFC (R410A).

The basic installation work procedures are the same as conventional refrigerant (R22) models. However, pay careful attention to the following points:

- (1) Since the working pressure is 1.6 times higher than that of conventional refrigerant (R22) models, some of the piping and installation and service tools are special. (See the table below.) Especially, when replacing a conventional refrigerant (R22) model with a new refrigerant R410A model, always replace the conventional piping and flare nuts with the R410A piping and flare nuts.
- (2) Models that use refrigerant R410A have a different charging port thread diameter to prevent erroneous charging with conventional refrigerant (R22) and for safety. Therefore, check beforehand.[The charging port thread diameter for R410A is 1/2 threads per inch.]
- (3) Be more careful that foreign matter (oil, water, etc.) does not enter the piping than with refrigerant (R22) models. Also, when storing the piping , securely seal the opening by pinching , taping, etc.
- (4) When charging the refrigerant, take into account the slight change in the composition of the gas and liquid phases, and always charge from the liquid phase side whose composition is stable.

Special tools for R410A

Tool name	Contents of change
Gauge manifold	Pressure is high and cannot be measured with a conventional gauge. To prevent erroneous mixing of other refrigerants, the diameter of each port has been changed. It is recommended the gauge with seals-0.1 to 5.3 MPa (-1 to 53 bar) for high pressure. -0.1 to 3.8 MPa (-1 to 38 bar) for low pressure.
Charge hose	To increase pressure resistance, the hose material and base size were changed.
Vacuum pump	A conventional vacuum pump can be used by installing a vacuum pump adapter.
Gas leakage detector Special gas leakage detector for HFC refrigerant R410A.	

Copper pipes

(1) Do not use the

It is necessary to use seamless copper pipes and it is desirable that the amount of residual oil is less than 40 mg/10m. Do not use copper pipes having a collapsed, deformed or discolored portion (especially on the interior surface). Otherwise, the expansion value or capillary tube may become blocked with contaminants.

Table I Thicknesses of Annealed Copper Pipes	Table 1	Thicknesses of Annealed Copper Pip	es
--	---------	------------------------------------	----

		Thickne	ss (mm)
Nominal diameter	Outer diameter (mm)	R410A	[ref.] R22
1/4	6.35	0.80	0.80
1/2	12.7	0.80	0.80

As an air conditioner using R410A incurs pressure higher than when using R22, it is necessary to choose adequate materials.

Thicknesses of copper pipes used with R410A are as shown in Table1. Never use copper pipes thinner than 0.8mm even when it is available on the market.

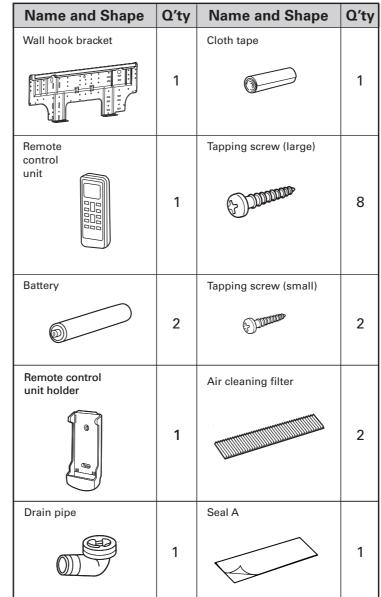
Do not use the existing (for R22) piping and flare nuts.	
• If the existing materials are used, the pressure inside the refrigerant cycle will rise and cause breakage, injury,	
etc.(Use the special R410A materials.)	

- (2) When installing and relocating the air conditioner, do not mix gases other than the specified refrigerant(R410A) to enter the refrigerant cycle.
 - If air or other gas enters the refrigerant cycle, the pressure inside the cycle will rise to an abnormally high value and cause breakage, injury, etc.

∧ CAUTION

When installing pipes shorter than 3m, sound of the outdoor unit will be transferred to the indoor unit, which will cause large operating sound or some abnormal sound.

For authorized service personnel only.


(1)	For the room air conditioner to operate satisfactory, install it as outlined in this installation manual.			
(2)	Connect the indoor unit and outdoor unit with the air conditioner piping and cords available standards parts. This installation manual describes the correct connections using the standard accessories and the parts specified in this installation manual.			
(3)	Have installation work done by authorized service personnel only.			
(4)	Never cut the power cord, lengthen or shorten the cord, or change the plug.			
(5)	Also do not use an extension cord.			
(6)	Plug in the power cord plug firmly. If the receptacle is loose, repair it before using the room air conditioner.			
(7)	Do not turn on the power until all installation work is complete.			

• Be careful not to scratch the air conditioner when handling it.

- After installation, explain correct operation to the customer, using the operating manual.
- Let the customer keep this installation manual because it is used when the air conditioner is serviced or moved.
- The maximum length of the piping is 20 m. The maximum height difference of the piping is 15 m, if the units are further apart than these, correct operation can not be guaranteed.

STANDARD ACCESSORIES

The following installation accessories are supplied. Use them as required.

One set of following parts are necessary in istallation of this product.

Name
Connection pipe assembly
Connection cord
Wall pipe
Decorative tape
Vinyl tape
Wall cap
Saddle
Drain hose
Tapping screws
Sealant

ELECTRICAL REQUIREMENT

Electric wire size and breaker capacity

Model Type	Connection cord (mm ²)	Breaker capacity (A)	
14,000 BTU/h class	1.5	15	

Use conformed cord with Type245 IEC57

Install all electrical works in accordance to the standard. Install the disconnect device with a contact gap of at least 3 mm in all poles nearby the units. (Both indoor unit and outdoor unit)

Install the circuit breaker nearby the units

Fig. 4

SELECTING THE MOUNTING ¬ r INSTALLATION DIAGRAM OF -POSITION

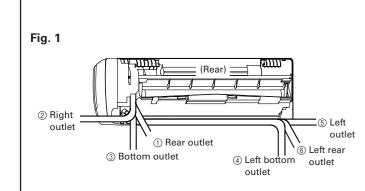
Decide the mounting position with the customer as follows:

1. INDOOR UNIT

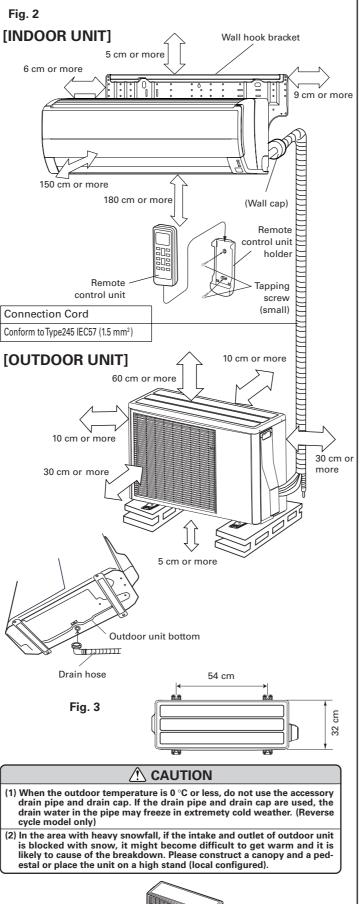
- (1) Install the indoor unit level on a strong wall which is not subject to vibration.
- (2) The inlet and outlet ports should not be obstructed : the air should be able to blow all over the room.
- (3) Install the unit near an electric outlet or special branch circuit.
- (4) Do not install the unit where it will be exposed to direct sunlight.
- (5) Install the unit where connection to the outdoor unit is easy.
- (6) Install the unit where the drain pipe can be easily installed.
- (7) Take servicing, etc. into consideration and leave the spaces shown in (Fig. 2). Also install the unit where the filter can be removed.

2. OUTDOOR UNIT

- (1) If possible, do not install the unit where it will be exposed to direct sunlight. (If necessary, install a blind that does not interfere with the air flow.)
- (2) Do not install the unit where a strong wind blows or where it is very dustv.
- (3) Do not install the unit where people pass.
- (4) Take you neighbors into consideration so that they are not disturbed by air blowing into their windows or by noise.
- (5) Provide the space shown in Fig. 2 so that the air flow is not blocked. Also for efficient operation, leave open three of the four directions front, rear, and both sides.


Install at a place that can withstand the weight of the indoor and outdoor units and install positively so that the units will not topple or fall.

ot	install	where	there	is	the	da


- (1) Do no inger of combustible gas leakage.
- (2) Do not install near heat sources. (3) If children under 10 years old may approach the unit, take preventive measures so that they cannot reach the unit.
- (4) Install the indoor unit on the wall where the height from the floors more than 180 cm.

[Indoor unit piping direction]

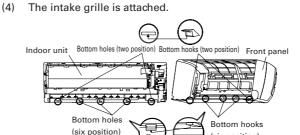
The piping can be connected in the six directions indicated in (Fig. 1). When the piping is connected in direction ②, ③, ④ or ⑤, cut along the piping groove in the side of the front cover with a hacksaw.

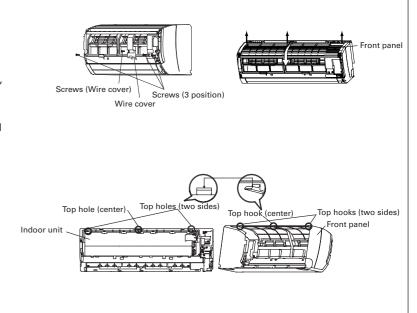
FRONT PANEL REMOVAL AND INSTALLATION

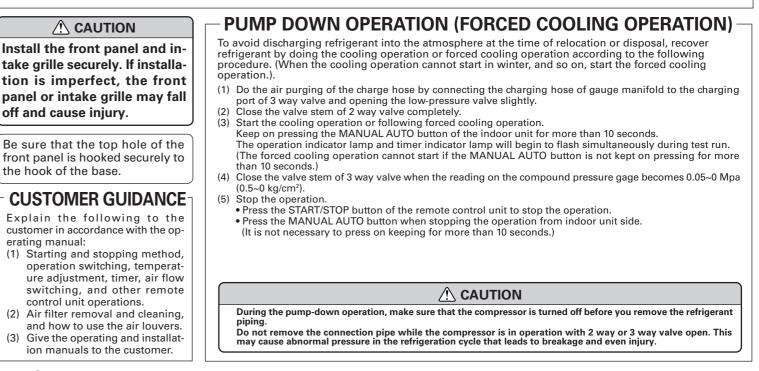
INTAKE GRILLE REMOVAL

- (1) Open the intake grille (2) Pull down the knob.
- (3) Lift the intake grille upward, until the axle at the top of the intake grille is removed.

INTAKE GRILLE INSTALLATION


(1) The fixing axle of the intake grille is installed on the Panel. (2) Lay down the intake grille.


FRONT PANEL REMOVAL


- Remove intake grille (Reference the intake grille removal.) (1) Remove wire cover. (2)
- (3) Remove three screws
- The front panel is pulled to the front, raising the upper surface, (4) and a front panel is removed.

THE FRONT PANEL INSTALLATION

- Firstly, fit the lower part of the front panel, and insert top and (1) bottom hooks. (Three top sides, eight bottom sides)
- Three screws is attached. (2)
- (3) The wire cover is attached.

POWER

-	rated voltage of this product is 230 V AC 50 Hz. The turning on the power, check if the voltage is within the	(5) Do not extend the power cord.
2) Befo	re turning on the nower check if the voltage is within the	
220 \	V -10 % to 240 V +10 % range.	(6) Perform wiring work in accordance with standards so that t air conditioner can be operated safely and correctly.
	ays use a special branch circuit and install a special ptacle to supply power to the room air conditioner.	(7) Install a leakage circuit breaker in accordance with the relat laws and regulations and electric company standards.
	a circuit breaker and receptacle matched to the capacity of air conditioner.	

current contracted capacity is insufficient, change the contracted capacity (2)

When the voltage is low and the air conditioner is difficult to start, contact the power company for increasing the voltage.

INDOOR UNIT

CUTTING THE HOLE IN THE WALL FOR THE CONNECTING PIPING

Center mark

Fasten with

vinyl tape

(Wall cap)

65 mm dia. hole

(Wall pipe)

(Inside)

Wall

- (1) Cut a 65 mm diameter hole in the wall at the position shown in (Fig. Fig. 5
- (2) When cutting the wall hole at the inside of the installation frame, cut the hole within the range of the left and right center marks of the at least 10 m installation frame
- When cutting the wall hole at the outside of the installation frame, cut the hole at least 10 mm lower. (3) Cut the hole so that the outside end is lower (5 to 10 mm) than the
- inside end.
- (4) Always align the center of the wall hole. If misaligned, water leakage will occur
- (5) Cut the wall pipe to match the wall thickness, stick it into the wall cap, fasten the cap with vinyl tape, and stick the pipe through the hole. (The connection pipe is supplied in the installation set.) (Fig. 5) (6) For left piping and right piping, cut the hole a little lower so that drain
- water will flow freely. (Fig. 5)

INSTALLING THE WALL HOOK BRACKET

- (1) Install the wall hook bracket so that it is correctly positioned horizon-Fig. 6 tally and vertically. If the wall hook bracket is tiled, water will drip to the floor.
- (2) Install the wall hook bracket so that it is strong enough to withstand the weight of an adult.
- Fasten the wall hook bracket to the wall with 6 or more screws through the holes near the outer edge of the bracket.
- Check that there is no rattle at the wall hook bracket.

Tapping screw

(Outside)

at least 10 mm lowe

65 mm dia. hole

If the wall pipe is not used, the cord interconnecting Install the wall hook bracket horizontally and perpendicularly. the indoor and outdoor units may touch metal and cause electric leakage.

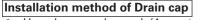
FORMING THE DRAIN HOSE AND PIPE

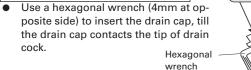
[Rear piping, Right piping, Bottom piping]

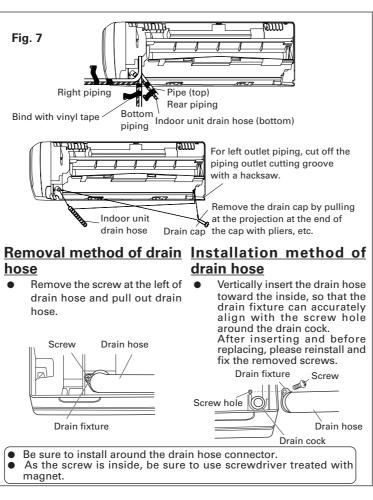
- Install the indoor unit piping in the direction of the wall hole and bind the drain hose and pipe together with vinyl tape. (Fig. 7)
- Install the piping so that the drain hose is at the bottom. • Wrap the pipe of the indoor unit that visible from the outside with decorative tape

[For Left rear piping, Left piping]

Interchange the drain cap and the drain hose


∧ CAUTION


- In order to align the drain hose and drain cap, be sure to insert securely and vertically. ncline insertion will cause water leakage.
- When inserting, be sure not to attach any material besides water. If any other material is attached, it will cause deterioration and water leakage.
- After removing drain hose, be sure not to forget mounting drain cap.
- Be sure to fix the drain hose with tape to the bottom of piping.


No gap

Drain cock

Drain cap

- For left piping and left rear piping, align the marks on the wall hook bracket and shape the connection pipe.
- Bend the connection piping at the bend radius of 70 mm or more and install no more than 35 mm from the wall
- After passing the indoor piping and drain hose through the wall hole, hang the indoor unit on the hooks at the top and bottom of the wall hook bracket.

[Installing the indoor unit]

• Hang the indoor unit from the hooks at the top of the wall hook bracket. Insert the spacer, etc. between the indoor unit and the wall hook bracket and separate the bottom of the indoor unit from the wall.

> Indoor uni Spacer) Wall hook bracket

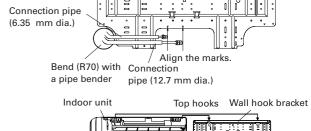
CONNECTING THE PIPING

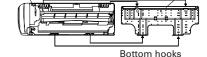
CONNECTION

- (1) Install the outdoor unit wall cap (supplied with the optional installation set or procured at the site) to the wall pipe.
- Connect the outdoor unit and indoor unit piping
- (3) After matching the center of the flare surface and tightening the nut hand tight, tighten the nut to the specified tightening torque with a torque wrench.

(Table 2) FLARING

- Check if [L] is flared uniformly (1) Cut the connection pipe to the necessary length with a pipe cutter. (2) Hold the pipe downward so that cuttings
- will not enter the pipe and remove the burrs.
- (3) Insert the flare nut onto the pipe and flare the pipe with a flaring tool


Insert the flare nut (always use the flare nut attached to the indoor and outdoor units


flare processing with a flare tool. Use the special R410A flare tool, or the conventional (for R22) flare tool. When using the conventional flare tool, always

use an allowance adjustment gauge and secure the A dimension shown in table 3

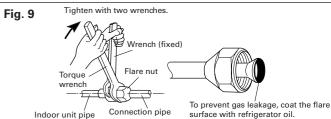

respectively) onto the pipe and perform the

Fig. 8

After hooking the indoor unit to the top hook, hook the fittings of the indoor unit to the two bottom hooks while lowering the unit and pushing it against the wall.

Table 2 Flare nut tightening torque

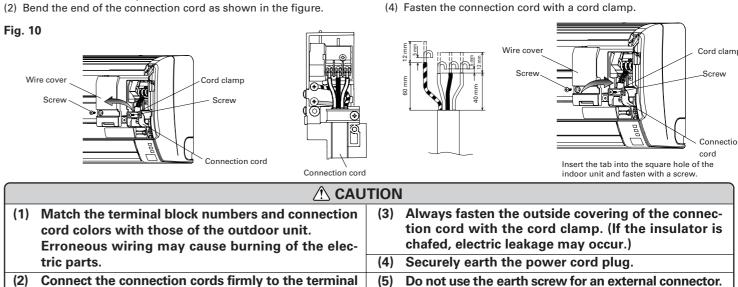
Flare nut	Tightening torque		
6.35 mm dia.	15.7 to 17.6 N • m (160 to 180 kgf • cm)		
12.7 mm dia.	49.0 to 53.9 N • m (500 to 550 kgf • cm)		
	· · · · · · · · · · · · · · · · · · ·		

Table 3 Pipe outside diameter

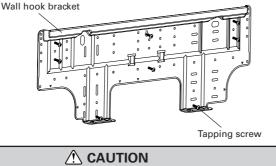
	Dine euteide	A (mm)		
	Pipe outside diameter R410A, clutch type	Flare tool for	Conventional (R22) flare tool	
		Clutch type	Wing nut type	
	ø 6.35 mm (1/4")	0 to 0.5	1.0 to 1.5	1.5 to 2.0
	ø 12.7 mm (1/2")	0 to 0.5	1.0 to 1.5	1.5 to 2.0

(1) Fasten a flare nut with a torque wrench as instructed in this manual. If fastened too tight, the flare nut may be broken after a long period of time and cause a leakage of refrigerant.

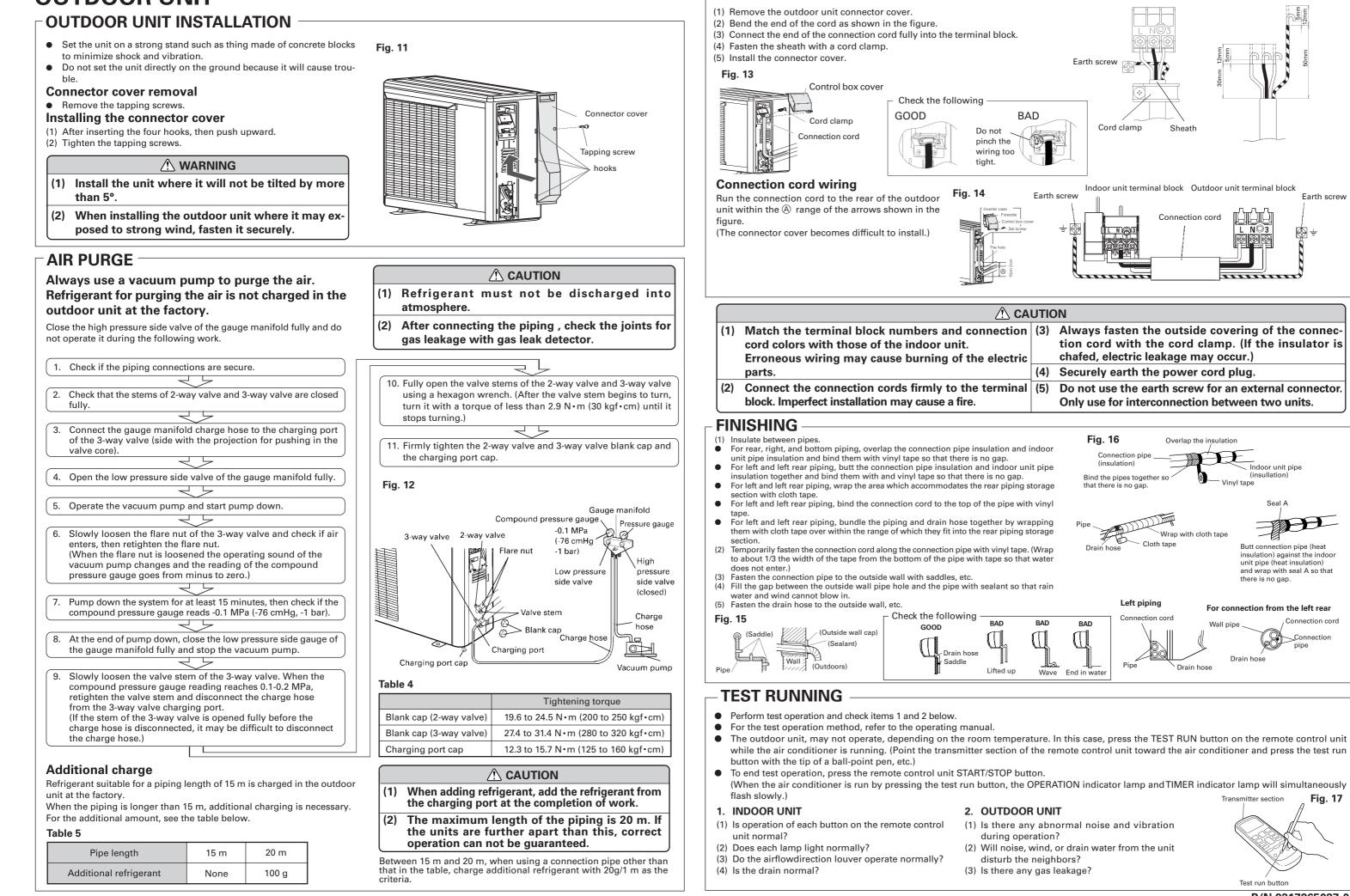
(2) During installation, make sure that the refrigerant pipe is attached firmly before you run the compressor. Do not operate the compressor under the condition of refrigerant piping not attached properly with 2-way or 3-way valve open. This may cause abnormal pressure in the refrigeration cycle that leads to breakage and even injury.


(3) Connect the end of the connection cord fully into the terminal block.

Only use for interconnection between two units.


INDOOR UNIT WIRING

(1) Remove the cord clamp. (2) Bend the end of the connection cord as shown in the figure.


block. Imperfect installation may cause a fire.

Earth screw

OUTDOOR UNIT

P/N 9317265027-01

Fig. 17

FUJITSU GENERAL LIMITED

1116, Suenaga, Takatsu-ku, Kawasaki 213-8502, Japan